Elementi di RADIOBIOLOGIA E RADIOPROTEZIONE

GIUSEPPE GUGLIELMI

Elementi di RADIOBIOLOGIA E RADIOPROTEZIONE

Prefazione a cura di STEFANO M. MAGRINI

Tutti i diritti sono riservati.

È vietato riprodurre, archiviare in un sistema di riproduzione o trasmettere sotto qualsiasi forma o con qualsiasi mezzo elettronico, meccanico, per fotocopia, registrazione o altro, qualsiasi parte di questa pubblicazione senza autorizzazione scritta dell'Editore. Ogni violazione sarà perseguita secondo le leggi civili e penali.

Avvertenza

Poiché le scienze mediche sono in continua evoluzione, l'Editore non si assume alcuna responsabilità per qualsiasi lesione e/o danno dovesse venire arrecato a persone o beni per negligenza o altro, oppure uso od operazioni di qualsiasi metodo, prodotto, istruzione o idea contenuti in questo libro. L'Editore raccomanda soprattutto la verifica autonoma delle diagnosi e del dosaggio dei medicinali, attenendosi alle istruzioni per l'uso e controindicazioni contenute nei foglietti illustrativi.

ISBN 978-88-299-3223-8

Stampato in Italia

Prefazione

Sono davvero grato all'amico Giuseppe Guglielmi per la passione e la tenacia con cui ha promosso la stesura di questo volume.

La radiobiologia è una disciplina relativamente giovane e costituzionalmente ibrida. Essa si pone al crocevia delle attività mediche che impiegano le radiazioni ionizzanti (radiologia, radioterapia, medicina nucleare), traendo tuttavia la sua ragion d'essere dalla continua interazione con le scienze di base (biochimica, biologia molecolare e delle cellule) e dallo stretto rapporto con la fisica e la chimica delle radiazioni. Questo carattere intrinsecamente multidisciplinare la rende affascinante dal punto di vista epistemologico; tuttavia, l'aspetto che rende opportuno un periodico aggiornamento degli strumenti didattici è dato soprattutto dalle sue importanti implicazioni professionali in ambito medico. Scriveva Carissimo Biagini nella prefazione al suo volume "Radiobiologia e Radioprotezione", edito da Piccin molti anni fa: "Non è possibile nascondere un sommesso entusiasmo per i progressi compiuti da questa scienza, la Radiobiologia, che costituisce il fondamento culturale delle materie dell'Area radiologica. I medici specialisti, cultori di questa area, sono i soli a godere del privilegio di avere i fondamenti biologici della loro attività come settore autonomo. I cultori della radiodiagnostica spesso ne sono ignari fruitori, più consapevoli i medici nucleari, pieni utilizzatori i radioterapisti; i radiobiologi, una schiera ridotta che si batte alle Termopili dell'indifferenza generale, ne sono attivi promotori. Laureati in fisica, medici del lavoro e medici legali che si occupano di radioprotezione, ne hanno assoluta necessità". Da allora, molto è cambiato. Gli enormi progressi della biologia e della genetica hanno rivoluzionato il nostro modo di intendere le interazioni delle radiazioni ionizzanti con la materia biologica; lo sviluppo dell'imaging e delle tecniche di trattamento radioterapico (diffusione della PET, della RM, delle macchine "ibride" in radiodiagnostica e medicina nucleare; introduzione di tecniche ad intensità modulata, volumetriche, stereotassiche, a guida di immagine in radioterapia) hanno ampliato gli interessi degli specialisti per le basi biologiche di queste nuove tecniche e per le loro conseguenze cliniche e in radioprotezione. Infine, l'oncologo radioterapista è oggi sempre più un oncologo clinico e il capitolo delle interazioni delle radiazioni ionizzanti con i farmaci chemioterapici, target e a valenza immunologica è diventato una parte insostituibile del suo patrimonio culturale. L'orgogliosa rivendicazione della Radiobiologia come disciplina medica, tuttora pienamente legittima, si stempera quindi nella cogente necessità di "ponti" culturali con le altre discipline prima richiamate, che rende ancora attuale la figura del radiobiologo, che modernamente va inteso come colui che è capace di stabilire collegamenti vitali fra queste discipline, con lo sguardo rivolto alle loro conseguenze cliniche. L'immagine che mi viene in mente, quindi, non è più quella delle Termopili, ma piuttosto quella di una rete, di una intelligenza collettiva come quella immaginata da Sigieri di Brabante, che necessita di ricercatori capaci di "traslare" (qualcosa di più che semplicemente "tradurre") i risultati delle scienze di base nel grande campo della clinica e della prevenzione. Non è un caso se nella formazione dell'oncologo radioterapista la conoscenza di questi risultati è così importante, specie - ma non solo - per coloro che saranno poi impegnati anche nella ricerca clinica; radiologi e medici nucleari, d'altronde, sono anch'essi pienamente coinvolti non solo nelle applicazioni cliniche dei principi della radioprotezione (giustificazione, ottimizzazione, limitazione delle dosi) ma anche nella produzione di dati che hanno una diretta implicazione radiobiologica clinica (si pensi alla radiomica e alla radiogenomica). In questa prospettiva, biologi, fisici, chimici, informatici hanno poi "necessità assoluta" - come scriveva Biagini - di un quadro di riferimento che indichi l'obiettivo della loro collaborazione con il medico specialista. Infine, il medico legale e il medico del lavoro trovano nelle informazioni derivanti dalla radiobiologia e dalla radioprotezione elementi essenziali per la loro professionalità.

La normativa radioprotezionistica si è pure molto evoluta nel corso degli anni. La recente conversione in legge dello Stato (D.Lgs. 101/2020) della Direttiva europea 2013/59/EURATOM enfatizza questa evoluzione definendo dettagliatamente principi e procedure adeguate all'impetuoso avanzamento delle conoscenze nelle discipline (mediche e non) che impiegano le radiazioni ionizzanti, nella radiobiologia di base e clinica, nelle tecniche di radioprotezione. Si ribadisce in particolare la necessità che il medico e gli esercenti le professioni sanitarie siano formati durante il loro percorso universitario e professionalizzante sui rischi derivanti dall'impiego

delle radiazioni ionizzanti e sulle misure per contenerli. Ciò presuppone la conoscenza dei principi della radiobiologia e rende tutte queste figure, come pure gli specialisti di area radiologica, "health promoters" nei confronti della popolazione. Le esplosioni atomiche belliche e gli incidenti alle centrali nucleari di Fukushima e di Chernobyl hanno rappresentato un retaggio molto pesante per l'umanità; perciò, fra le attività umane, quelle che si basano sull'impiego delle radiazioni ionizzanti sono quelle più rigorosamente normate dal punto di vista protezionistico. È perciò evidente la necessità di una adeguata "filosofia del rischio", che definisca i vantaggi e gli svantaggi degli impieghi delle radiazioni (soprattutto in ambito medico), non solo in assoluto, ma in rapporto alle pratiche alternative disponibili per raggiungere lo stesso scopo. Al pubblico dei non professionisti deve perciò giungere un messaggio equilibrato: la formazione del medico, del tecnico di radiologia, dell'infermiere che deve veicolare queste informazioni al pubblico è quindi fondamentale.

Il volume raccoglie più contributi di diversi specialisti. Si è cercato di renderlo fruibile alle diverse figure prima richiamate e pertanto di fornire informazioni corrette ma facilmente comprensibili. Questo implica che la visione d'insieme è privilegiata rispetto agli approfondimenti che saranno certo necessari per i differenti specialisti. In questo senso il libro, destinato a un pubblico ampio (dagli studenti di medicina ai medici in formazione specialistica, agli esercenti le professioni sanitarie, ai fisici) si pone come strumento per una formazione di base, da approfondirsi in misura maggiore o minore a seconda delle diverse tipologie di lettore. Auspico che possa essere utile per facilitare la comprensione dei principi fondamentali della disciplina e per evidenziare le connessioni fra le differenti radici della moderna radiobiologia, facilitando il dialogo fra i diversi professionisti.

Brescia, Maggio 2022

Stefano M. Magrini

Alla mia famiglia, per il loro continuo amore, supporto e ispirazione

GG

Autori

LUIGI BARBERINI

Dipartimento di Scienze Mediche e Sanità Pubblica Università degli Studi di Cagliari

AMEDEO CAPOTOSTI

Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma

MASSIMO CONESE

Dipartimento di Scienze Mediche e Chirurgiche Università degli Studi di Foggia

MICHELE COPPOLA

Radiodiagnostica, Ospedale "Cotugno" Azienda dei Colli, Napoli

SAMANTHA CORNACCHIA

Servizio di Radioprotezione e Sorveglianza Fisica ASL BT Ospedale "Mons. Dimiccoli", Barletta

SANTE DI GIOIA

Dipartimento di Scienze Mediche e Chirurgiche Università degli Studi di Foggia

GIORGIO FACHERIS

Unità di Radioterapia, Dipartimento di Specialità Medico-Chirurgiche Scienze Radiologiche e Sanità Pubblica Università degli Studi di Brescia

LORENZO FAGGIONI

U.O. Radiodiagnostica 1 Universitaria Dipartimento Radiologia Diagnostica Interventistica e Medicina Nucleare Azienda Ospedaliero Universitaria, Pisa

CLAUDIO GRANATA

Radiologia Pediatrica IRCCS Materno-Infantile "Burlo Garofolo", Trieste

GIUSEPPE GUGLIELMI

Dipartimento di Medicina Clinica e Sperimentale Università degli Studi di Foggia Radiologia Ospedale "Mons. Dimiccoli", Barletta Radiologia IRCCS "Casa Sollievo della Sofferenza" San Giovanni Rotondo, Foggia

LUCA INDOVINA

Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma

MARIANO INTRIERI

Scienze e Tecniche di Medicina di Laboratorio Dipartimento di Medicina e Scienze della Salute "Vincenzo Tiberio" Università degli Studi del Molise, Campobasso

LORENZO LIVI

Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio" Università degli Studi di Firenze

MAURO LOI

Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio" Università degli Studi di Firenze

STEFANO MARIA MAGRINI

Unità di Radioterapia Dipartimento di Specialità Medico-Chirurgiche Scienze Radiologiche e Sanità Pubblica Università degli Studi di Brescia

MONICA MANGONI

Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio" Università degli Studi di Firenze

MAURIZIO MARGAGLIONE

Genetica Medica

Dipartimento di Medicina Clinica e Sperimentale Università degli Studi di Foggia

MARIA CRISTINA MARZOLA

Servizio di Medicina Nucleare Centro PET Ospedale "S. Maria della Misericordia", Rovigo

ROBERTO MORETTI

Università Cattolica del Sacro Cuore Sede di Roma

DANIELA ORIGGI

Servizio Fisica Sanitaria Istituto Europeo di Oncologia, Milano

ANTONIO ORLACCHIO

Dipartimento Scienze Chirurgiche Università degli Studi "Tor Vergata", Roma

NADIA PASINETTI

Dipartimento di Specialità Medico-Chirurgiche Scienze Radiologiche e Sanità Pubblica Università degli Studi di Brescia

EDOARDO PASTORELLO

Unità di Radioterapia

Dipartimento di Specialità Medico-Chirurgiche Scienze Radiologiche e Sanità Pubblica Università degli Studi di Brescia

STEFANO PERGOLIZZI

Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina

GIUSEPPE PERNA

Dipartimento di Medicina Clinica e Sperimentale Università degli Studi di Foggia

ANTONIO PINTO

Radiodiagnostica, Ospedale C.T.O. Azienda dei Colli, Napoli

LUCA SABA

Dipartimento di Radiologia Azienda Ospedaliero Universitaria di Cagliari Università degli Studi di Cagliari

SERGIO SALERNO

Istituto di Radiologia Università degli Studi di Palermo

COSTANZA SANTINI

Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio" Università degli Studi di Firenze

ORAZIO SCHILLACI

Università di Roma "Tor Vergata"

MICHELE STASI

Fisica Sanitaria A.O. Ordine Mauriziano, Torino

MARIA CHIARA TERRANOVA

Istituto di Radiologia Università degli Studi di Palermo

VINCENZO TOMBOLINI

Radioterapia Policlinico Umberto I, Roma

LUCA TRIGGIANI

Unità di Radioterapia Dipartimento di Specialità Medico-Chirurgiche Scienze Radiologiche e Sanità Pubblica Università degli Studi di Brescia

Indice generale

Capitolo I	Capitolo 4	
Origine e proprietà della radiazioni ionizzanti 1	Effetti delle radiazioni a livello cellulare	45
(G. Perna)	(M. Mangoni, M. Loi, C. Santini, L. Livi)	
Radiazioni ionizzanti1	Effetti delle radiazioni ionizzanti sul DNA4	45
Classificazione delle radiazioni ionizzanti	Riconoscimento del danno al DNA4	45
Sorgenti di radiazioni ionizzanti	Ciclo cellulare e checkpoints del danno al DNA4	47
Sorgenti naturali2	Sistemi di riparazione del DNA	47
Sorgenti artificiali	Effetti delle radiazioni ionizzanti su altre	
Origine delle radiazioni ionizzanti4	macromolecole cellulari4	48
La struttura atomica	Danno strutturale alle membrane cellulari 4	48
Il nucleo e l'energia di legame	Effetto delle radiazioni ionizzanti sui mitocondri	
Decadimento radioattivo8	e su altri organuli cellulari4	48
Decadimento α	Morte cellulare	
Decadimento β9	Curve di sopravvivenza cellulare	
Decadimento γ11	Le 5 R della radiobiologia	
Legge del decadimento radioattivo	Effetti non target5	
Raggi X nel tubo radiogeno	Effetto bystander5	
Radiazione di frenamento14	Effetto abscopal, vaccino in situ e 6 R	
Raggi X caratteristici	Bibliografia	
Grandezze fisiche utilizzate per descrivere la	O .	
radiazione15		
Bibliografia16	Capitolo 5	
	Effetti delle radiazioni su tessuti e organi5	55
Capitolo 2	(M. Conese, S. Di Gioia, N. Pasinetti, G. Guglielmi)	
Interazioni fra radiazioni ionizzanti e materia17	Introduzione	55
(D. Origgi)	Effetti deterministici5	
Introduzione	Danno tissutale5	
Interazione particelle cariche con la materia	Le reazioni alla base del danno tissutale acuto e	
Particelle cariche pesanti: potere frenante per	tardivo	56
collisione	Effetti delle radiazioni su tessuti e organi	
Particelle cariche: range e picco di Bragg 19	Polmone6	
Particelle cariche leggere: elettroni21	Testa e collo6	
Interazioni dei fotoni con la materia	Pelvi	
Sezione d'urto e coefficiente di assorbimento 23	Reni	
Principali interazioni dei fotoni23	Epidermide	
Bibliografia27	Cristallino	
C	Encefalo6	
Capitolo 3	Sistema circolatorio e cuore	
Effetti delle radiazioni a livello genetico29	La radioterapia stereotassica6	
(M. Margaglione, M. Intrieri)	Testi da consultare	
Introduzione	Riferimenti bibliografici6	
Il patrimonio genetico	C	
DNA		
RNA	Capitolo 6	
Geni	Oncogenesi da radiazioni6	59
Cromosomi	(V. Tombolini)	
Effetti delle radiazioni sul genoma35	Introduzione	59
Effetti delle radiazioni sul DNA35	La radiobiologia delle bassi dosi e la cancerogenesi 6	
Meccanismi di riparazione del danno del DNA39	Fattore di efficacia della dose e del dose-rate	
Effetti delle radiazioni sui cromosomi37	(DDREF)	71
Effetti biologici	I modelli di rischio	73
Bibliografia42	Stime e tipi di cancri indotti dalle radiazioni	

Incidenza di leucemia dopo esposizioni durante	Ottimizzazione
l'infanzia o in età inferiore a 20 anni nei	Ottimizzazione in TC115
sopravvissuti alle bombe atomiche	Ottimizzazione in fluoroscopia diagnostica116
Incidenza di leucemia nei bambini dopo	Livelli diagnostici di riferimento
esposizioni per procedure mediche	Uso dei dispositivi di protezione individuale
Mortalità per leucemia negli adulti esposti a basse	anti-raggi X
dosi ripetute	La comunicazione del rischio e del beneficio di un
Mortalità da tumori solidi dopo esposizioni acute e	esame radiologico117
protratte alle radiazioni ionizzanti in particolare nei	Conclusioni
radiologi	Bibliografia117
Secondi tumori dopo radioterapia	·
Utilizzo di biomarcatori delle radiazioni negli studi	Capitolo 11
epidemiologici e radiobiologici	Dose-tracking: ottimizzazione delle
Bibliografia	apparecchiature radiologiche121
O .	(S. Salerno, M.C. Terranova)
Capitolo 7	Introduzione e descrizione dei sistemi di dose
Risposta alle radiazioni: radiosensibilità e	tracking
radioresistenza	Cosa tracciare?
(M. Loi, M. Mangoni, L. Livi)	Come tracciamo?
Principi generali	Quali sistemi di Dose Monitoring sono oggi in
Strategie di radiosensibilizzazione	commercio?
Ripopolamento accelerato84	Dose tracking come strumento di ottimizzazione 125
Ipossia tumorale	Bibliografia
Inibizione dei pathways cellulari di	Dionograna123
radioresistenza87	Capitolo 12
Regolazione del ciclo cellulare87	Il sistema Dose Monitoring in radiologia127
Modulazione della risposta immunitaria	(L. Barberini, L. Saba, L. Faggioni)
Strategie di radioprotezione	Introduzione
Bibliografia89	Definizioni e loro adeguamenti al D.Lgs 101/2020 127
0. 4.1.0	Il processo di Dose Monitoring
Capitolo 8	Sistemi informatici per il Dose Monitoring
Radioprotezione del paziente: le implicazioni del	Il Registro degli indici di dose
nuovo D.Lgs 101/2020	(Dose Index Registry, DIR)
(A. Orlacchio, M. Stasi, S. Pergolizzi, M.C. Marzola)	Il Dose Monitoring e la comunicazione dei rischi134
Bibliografia97	L'audit clinico interno: uno strumento con un
	meccanismo a feedback per verificare l'appropriatezza
Capitolo 9	delle esposizioni mediche radiologiche
Radioprotezione dei lavoratori e della	Bibliografia137
popolazione	
(S. Cornacchia, G. Guglielmi)	Capitolo 13
Introduzione	Radioprotezione in Medicina Nucleare
Esposizioni a radiazioni in ambito sanitario	(L. Indovina, A. Capotosti, R. Moretti, O. Schillaci)
Panorama normativo100	Introduzione
Figure coinvolte nella radioprotezione	Progettazione e principi di Radioprotezione presso
Lavoratori101	un servizio di Medicina Nucleare
Esperto di radioprotezione	Radioprotezione dei Lavoratori in Medicina
Popolazione	Nucleare140
Radioprotezione operativa	Radioprotezione degli individui della popolazione
Classificazione dei lavoratori e degli ambienti	sottoposti a procedure medico nucleari142
di lavoro103	Radioprotezione degli individui della popolazione
Dosimetria individuale	in Medicina Nucleare144
Radioprotezione in medicina nucleare	Gestione dei rifiuti radioattivi144
Radioprotezione in diagnostica radiologica108	Bibliografia145
Indennità di rischio radiologico108	· ·
Bibliografia109	Capitolo 14
Appendice	Principi di radioprotezione in radioterapia147
	(L. Triggiani, G. Facheris, E. Pastorello,
	S.M. Magrini)
Capitolo 10	Introduzione
La radioprotezione in ambito pediatrico113	Responsabilità dei professionisti sanitari147
(C. Granata)	Radioterapia a fasci esterni
Le peculiarità in ambito pediatrico	Brachiterapia
Giustificazione e ottimizzazione	Radioprotezione in radioterapia nel paziente
Giustificazione e linee guida	pediatrico e durante la gravidanza

Prevenzione dell'esposizione accidentale
Capitolo 15
Radioprotezione in Radiodiagnostica
(A. Pinto, M. Coppola, S. Salerno, S. Cornacchia,
G. Guglielmi)
Introduzione
Decreto Legislativo 31 luglio 2020 n. 101
Tipologie di esposizione in ambito
radioprotezionistico157
I tre principi fondamentali della radioprotezione
medica

Figure professionali coinvolte e loro responsabilità158
Il Medico Specialista159
Il Responsabile di impianto radiologico, lo
Specialista in Fisica Medica ed il Tecnico Sanitario
di Radiologia Medica159
L'esperto di radioprotezione160
La classificazione dei lavoratori162
Conclusioni
Bibliografia
Indice analitico