

Luigia Sabbatini • Cosimino Malitesta • Paolo Pastore

Chimica Analitica

Accedi all'**ebook** e ai contenuti **digitali**

Espandi le tue risorse

un libro che **non pesa** e si **adatta** alle dimensioni del **tuo lettore**!

Utilizza il codice personale contenuto nel riquadro per registrarti al sito **edises.it** e attiva la tua **area riservata**. Potrai accedere alla **versione digitale** del testo e a ulteriore **materiale didattico**.

Scopri il tuo **codice personale** grattando delicatamente la superficie

Il volume NON può essere venduto, né restituito, se il codice personale risulta visibile.

Per attivare i **servizi riservati**, collegati al sito **edises.it** e segui queste semplici istruzioni

L'accesso al materiale didattico sarà consentito per 18 mesi.

Se sei registrato al sito

- clicca su Accedi al materiale didattico
- inserisci email e password
- inserisci le ultime 4 cifre del codice ISBN, riportato in basso a destra sul retro di copertina
- inserisci il tuo **codice personale** per essere reindirizzato automaticamente all'area riservata

Se non sei già registrato al sito

- clicca su Accedi al materiale didattico
- registrati al sito edises.it
- attendi l'email di conferma per perfezionare la registrazione
- torna sul sito **edises.it** e segui la procedura già descritta per *utenti registrati*

Ulteriori materiali e strumenti didattici sono accessibili dalla propria **area riservata** secondo la procedura indicata nel frontespizio.

Dalla sezione *materiali e servizi* della tua area riservata potrai accedere a:

- **Ebook**: versione digitale del testo in formato epub, standard dinamico che organizza il flusso di testo in base al dispositivo sul quale viene visualizzato. Fruibile mediante l'applicazione gratuita BookShelf, consente una visualizzazione ottimale su lettori e-reader, tablet, smartphone, iphone, desktop, Android, Apple e Kindle Fire.
- **Software di simulazione**: un database di quesiti a risposta multipla per effettuare esercitazioni sull'**intero programma** o su **argomenti specifici**.

L'accesso ai contenuti digitali sarà consentito per 18 mesi.

Lungo le pagine del testo sono presenti dei **QRcode** (box, approfondimenti, paragrafi, esercizi di ricapitolazione, risposte agli esercizi di ricapitolazione, bibliografia), immediatamente visualizzabili su smartphone o tablet inquadrando il codice QR riportato alla pagina cartacea a cui si riferiscono. Potrai accedere a tali contenuti inserendo le tue credenziali solo al primo accesso (LOGIN).

Chimica Analitica

Coordinamento a cura di

Luigia Sabbatini Cosimino Malitesta Paolo Pastore

CHIMICA ANALITICA

Copyright © 2025 EdiSES Edizioni S.r.l. - Napoli

9 8 7 6 5 4 3 2 1 0 2029 2028 2027 2026 2025

Le cifre sulla destra indicano il numero e l'anno dell'ultima ristampa effettuata

A norma di legge è vietata la riproduzione, anche parziale, del presente volume o di parte di esso con qualsiasi mezzo.

L'Editore

L'Editore ha effettuato quanto in suo potere per richiedere il permesso di riproduzione del materiale di cui non è titolare del copyright e resta comunque a disposizione di tutti gli eventuali aventi diritto.

Fotocomposizione TPM S.a.s. – Città di Castello (PG)

Stampato presso la PrintSprint S.r.l - Napoli

per conto della EdiSES Edizioni S.r.l. – Piazza Dante Alighieri, 89 – Napoli

www.edises.it assistenza.edises.it

ISBN 978 88 3623 194 2

I curatori, l'editore e tutti coloro in qualche modo coinvolti nella preparazione o pubblicazione di quest'opera hanno posto il massimo impegno per garantire che le informazioni ivi contenute siano corrette, compatibilmente con le conoscenze disponibili al momento della stampa; essi, tuttavia, non possono essere ritenuti responsabili dei risultati dell'utilizzo di tali informazioni e restano a disposizione per integrare la citazione delle fonti, qualora incompleta o imprecisa.

Realizzare un libro è un'operazione complessa e, nonostante la cura e l'attenzione poste dagli autori e da tutti gli addetti coinvolti nella lavorazione dei testi, l'esperienza ci insegna che è praticamente impossibile pubblicare un volume privo di imprecisioni. Saremo grati ai lettori che vorranno inviarci le loro segnalazioni e/o suggerimenti migliorativi sulla piattaforma assistenza. edises.it

Gli autori

Capitolo 1 – Elementi di statistica per la chimica analitica

PAOLO OLIVERI (COORDINATORE) Università degli Studi di Genova Professore Ordinario paolo.oliveri@unige.it

MONICA CASALE Università degli Studi di Genova Professore Associato monica.casale@unige.it MICHELE FORINA Università degli Studi di Genova Già Professore Ordinario michele.forina@alice.it

CRISTINA MALEGORI Università degli Studi di Genova Ricercatore cristina.malegori@unige.it

Capitolo 2 – Validazione dei metodi analitici e controllo qualità

FEDERICA BIANCHI (COORDINATORE) Università degli Studi di Parma Professore Ordinario federica.bianchi@unipr.it

MARIA CARERI Università degli Studi di Parma Professore Ordinario maria.careri@unipr.it

SANDRA FURLANETTO Università degli Studi di Firenze Professore Ordinario sandra.furlanetto@unifi.it

ALESSANDRO MANGIA Università degli Studi di Parma Già Professore Ordinario mangia.alessandro@gmail.com EMILIO MARENGO Università del Piemonte Orientale Professore Ordinario emilio.marengo@uniupo.it

MONICA MATTAROZZI Università degli Studi di Parma Professore Associato monica.mattarozzi@unipr.it

ELISA ROBOTTI Università del Piemonte Orientale Professore Associato elisa.robotti@uniupo.it

Capitolo 3 – Campionamento, pretrattamento del campione e tecniche di estrazione

ALDO LAGANÀ (COORDINATORE) Sapienza, Università di Roma Professore Ordinario aldo.lagana@uniroma1.it LUIGI MONDELLO (COORDINATORE) Università degli Studi di Messina Professore Ordinario luigi.mondello@unime.it ANNA LAURA CAPRIOTTI Sapienza, Università di Roma Professore Associato annalaura.capriotti@uniroma1.it

CHIARA CAVALIERE Sapienza, Università di Roma Professore Associato chiara.cavaliere@uniroma1.it

CARMELA MARIA MONTONE Sapienza, Università di Roma Post-Doc carmelamaria.montone@uniroma1.it SUSY PIOVESANA Sapienza, Università di Roma Ricercatore susy.piovesana@uniroma1.it

MARIOSIMONE ZOCCALI Università degli studi di Messina Ricercatore mariosimone.zoccali@unime.it

Capitolo 4 – Equilibri chimici ed equilibri acido-base

VALERIO DI MARCO Università degli Studi di Padova Professore Associato valerio.dimarco@unipd.it

PAOLO PASTORE Università degli Studi di Padova Professore Ordinario paolo.pastore@unipd.it

Capitolo 5 – Equilibri di complessamento ed equilibri di precipitazione

VALERIO DI MARCO Università degli Studi di Padova Professore Associato valerio.dimarco@unipd.it

PAOLO PASTORE Università degli Studi di Padova Professore Ordinario paolo.pastore@unipd.it

Capitolo 6 – Equilibri redox ed equilibri di ripartizione

VALERIO DI MARCO Università degli Studi di Padova Professore Associato valerio.dimarco@unipd.it

PAOLO PASTORE Università degli Studi di Padova Professore Ordinario paolo.pastore@unipd.it

Capitolo 7 – Metodi volumetrici e titolazioni acido-base

VALERIO DI MARCO Università degli Studi di Padova Professore Associato valerio.dimarco@unipd.it

PAOLO PASTORE Università degli Studi di Padova Professore Ordinario paolo.pastore@unipd.it

Capitolo 8 – Titolazioni complessometriche, titolazioni per precipitazione e titolazioni redox

VALERIO DI MARCO Università degli Studi di Padova Professore Associato valerio.dimarco@unipd.it PAOLO PASTORE Università degli Studi di Padova Professore Ordinario paolo.pastore@unipd.it

Capitolo 9 - Chimica elettroanalitica

SALVATORE DANIELE Università Ca' Foscari Venezia Già Professore Ordinario sig@unive.it

GIUSEPPE EGIDIO DE BENEDETTO Università del Salento Professore Associato giuseppe.debenedetto@unisalento.it COSIMINO MALITESTA Università del Salento Professore Ordinario cosimino.malitesta@unisalento.it

Capitolo 10 - Metodi spettroscopici di analisi

Sezione 10A – Introduzione ai metodi spettrochimici – Spettroscopie molecolari

MASSIMO BONINI Università degli Studi di Firenze Professore Associato massimo.bonini@unifi.it FRANCESCA RIDI Università degli Studi di Firenze Professore Associato francesca.ridi@unifi.it

Sezione 10B - Spettroscopie atomiche

ORNELLA ABOLLINO Università degli Studi di Torino Professore Ordinario ornella.abollino@unito.it EMANUELE MAGI Università degli Studi di Genova Professore Ordinario emanulele.magi@unige.it

Capitolo 11 – Tecniche separative

ALBERTO CAVAZZINI (COORDINATORE) Università degli Studi di Ferrara Professore Ordinario alberto.cavazzini@unife.it

LUIGI MONDELLO (COORDINATORE) Università degli Studi di Messina Professore Ordinario luigi.mondello@unime.it MARTINA CATANI Università degli Studi di Ferrara Professore Associato martina.catani@unife.it

TATIANA CHENET Università degli Studi di Ferrara Ricercatore tatiana.chenet@unife.it CATIA CONTADO

Università degli Studi di Ferrara

Professore Associato catia.contado@unife.it

PAOLA DONATO

Università degli Studi di Messina

Professore Associato

paolaagataeustochia.donato@unime.it

SIMONA FELLETTI

Università degli Studi di Ferrara

Ricercatore

simona.felletti@unife.it

LUISA PASTI

Università degli Studi di Ferrara

Professore Ordinario

luisa.pasti@unife.it

DANILO SCIARRONE

Università degli Studi di Messina

Professore Ordinario

danilo.sciarrone@unime.it

PETER TRANCHIDA

Università degli Studi di Messina

Professore Ordinario

peterquinto.tranchida@unime.it

MARIOSIMONE ZOCCALI

Università degli Studi di Messina

Ricercatore

mariosimone.zoccali@unime.it

Capitolo 12 – Spettrometria di massa

MARIA CARERI (COORDINATORE)

Università degli Studi di Parma

Professore Ordinario maria.careri@unipr.it

CARLO BARBANTE

Università Cà Foscari Venezia

Professore Ordinario

barbante@unive.it

FEDERICA BIANCHI

Università degli Studi di Parma

Professore Ordinario

federica.bianchi@unipr.it

FEDERICA CAMIN

Università degli Studi di Trento

Professore Associato

federica.camin@unitn.it

TOMMASO CATALDI

Università deli Studi di Bari Aldo Moro

Professore Ordinario

tommaso.cataldi@uniba.it

ALESSANDRO MANGIA

Università degli Studi di Parma

Già Professore Ordinario

mangia.alessandro@gmail.com

Capitolo 13 – Tecniche ifenate

ALDO LAGANÀ (COORDINATORE)

Sapienza, Università di Roma

Professore Ordinario

aldo.lagana@uniroma1.it

LUIGI MONDELLO (COORDINATORE)

Università degli studi di Messina

Professore Ordinario

luigi.mondello@unime.it

ANNA LAURA CAPRIOTTI

Sapienza, Università di Roma

Professore Associato

annalaura.capriotti@uniroma1.it

CHIARA CAVALIERE

Sapienza, Università di Roma

Professore Associato

chiara.cavaliere@uniroma1.it

ANDREA CERRATO

Sapienza, Università di Roma

Post-Doc

andrea.cerrato@uniroma1.it

MONICA MATTAROZZI

Università degli Studi di Parma

Professore Associato

monica.mattarozzi@unipr.it

CARMELA MARIA MONTONE Sapienza, Università di Roma Post-Doc

carmelamaria.montone@uniroma1.it

SUSY PIOVESANA

Sapienza, Università di Roma Ricercatore susy.piovesana@uniroma1.it

PETER TRANCHIDA Università degli studi di Messina Professore Ordinario peterquinto.tranchida@unime.it

Capitolo 14 – Chimica bioanalitica e biosensori

ALDO RODA (COORDINATORE)

Alma Mater Studiorum Università di Bologna

Professore Emerito aldo.roda@unibo.it

LAURA ANFOSSI

Università degli Studi di Torino

Professore Ordinario laura.anfossi@unito.it

FABIANA ARDUINI

Università degli Studi di Roma Tor Vergata

Professore Ordinario fabiana.arduini@uniroma2.it

CLAUDIO BAGGIANI

Università degli Studi di Torino

Professore Ordinario claudio.baggiani@unito.it

FRANCESCO BALDINI

CNR - IFAC

Dirigente di Ricerca f.baldini@ifac.cnr.it

DARIO COMPAGNONE

Università degli Studi di Teramo

Professore Ordinario dcompagnone@unite.it

AMBRA GIANNETTI

CNR - IFAC

Dirigente di Ricerca a.giannetti@ifac.cnr.it

MARCO GIANNETTO

Università degli Studi di Parma

Professore Associato marco.giannetto@unipr.it GIOVANNA MARRAZZA

Università degli Studi di Firenze

Professore Ordinario giovanna.marrazza@unifi.it

MARIA MINUNNI

Università degli Studi di Pisa Professore Ordinario

maria.minunni@unipi.it

DANILA MOSCONE

Università degli Studi di Roma Tor Vergata

Già Professore Ordinario danila.moscone@uniroma2.it

FRANCESCO RICCI

Università degli Studi di Roma Tor Vergata

Professore Ordinario francesco.ricci@uniroma2.it

GIUSEPPE SPOTO

Università degli Studi di Catania

Professore Ordinario giuseppe.spoto@unict.it

LUISA TORSI

Università degli Studi di Bari Aldo Moro

Professore Ordinario luisa.torsi@uniba.it

PAOLO UGO

Università Ca' Foscari Venezia Già Professore Ordinario

ugo@unive.it

Prefazione

La Chimica Analitica è giustamente definita disciplina problem solving, deputata, cioè, a raccogliere le sfide poste dalle esigenze sempre più complesse che emergono quotidianamente nel campo della Chimica, della Biologia, della Medicina, della Farmacologia, dei Beni Culturali, delle Scienze Ambientali, Agroalimentari, Forensi e dei Materiali, fornendo mezzi e competenze per individuare i problemi, razionalizzarli e suggerire soluzioni, attraverso la determinazione della composizione chimica dei sistemi d'interesse

La richiesta sempre più pressante di analisi *in situ*, in *tempo reale*, su campioni complessi e spesso di dimensioni/ quantità limitate è la spinta alla continua evoluzione della disciplina, sia dal punto di vista tecnico-strumentale che delle conoscenze di base: ogni tanto è quindi necessario *ripensare* un testo didattico che rappresenti un'offerta adeguata alla *domanda* di conoscenza posta da chi si accinge a diventare un operatore del settore.

Il testo è *multiautore*: i vari capitoli sono stati sviluppati da docenti e ricercatori selezionati in modo da garantire specifiche competenze negli argomenti, unitamente ad esperienza didattica. Impossibile ritenere di compendiare in un unico testo tutto il *sapere* relativo alla Chimica Analitica, occorre definire il target dei destinatari ed operare delle scelte. Il presente testo è rivolto agli studenti dei corsi di laurea in Chimica, Biologia, Biotecnologie, Scienze Ambientali, Farmacia, Scienze Alimentari e Scienze della Salute. Gli argomenti trattati possono coerentemente essere ripartiti tra i corsi del triennio di base e del successivo biennio di specializzazione. Il testo ha l'obiettivo di fornire, accanto ai fondamenti di conoscenza sul trattamento dei campioni, sull'approccio statistico per l'interpretazione e comprensione dei dati e sugli equilibri in soluzione, i principi e gli sviluppi delle tecniche strumentali di più largo impiego ed informazioni sui processi per l'assicurazione ed il controllo di qualità.

In particolare, i primi due capitoli descrivono strategie per trattare i dati delle analisi e massimizzare le informazioni, sottolineando l'importanza della qualità dei dati e della validazione dei metodi analitici al fine dell'attendibilità dei risultati.

Il terzo capitolo fornisce alcuni elementi di base per il campionamento, pretrattamento e conservazione del campione, descrivendo anche semplici dispositivi ed approcci operativi.

I capitoli dal quarto all'ottavo trattano gli equilibri in soluzione (acido-base, complessazione, precipitazione, ossido-riduzione) e le classiche tecniche di titolazione. Di rilievo in questa trattazione è l'approccio sistematico utilizzato per la definizione e risoluzione dei problemi. Gli autori desiderano far comprendere agli studenti che l'utilizzo di formule risolutive preconfezionate, a parte lo sforzo mnemonico richiesto, può non essere idoneo ad affrontare alcuni problemi che sono *out of the box*, che, cioè, non si collocano in tipologie ben definite. L'utilizzo di un approccio sistematico, la definizione del problema analitico attraverso la scrittura delle relazioni fra concentrazioni all'equilibrio e grandezze note e l'introduzione di ragionevoli approssimazioni per la semplificazione della risoluzione matematica, consente allo studente di risolvere problemi apparentemente molto complessi.

I capitoli dal nono al quattordicesimo sono dedicati alle tecniche strumentali di più largo impiego la cui conoscenza è imprescindibile bagaglio per chiunque operi in campo chimico analitico.

In particolare, il capitolo 9 è dedicato all'elettroanalisi: accanto alle tecniche elettroanalitiche classiche, a corrente zero o diversa da zero, sono descritti i metodi voltammetrici ad impulso ed un cenno alla coulometria.

Il capitolo 10 tratta i metodi spettroscopici di analisi ed è suddiviso in due sezioni: spettroscopia molecolare e spettroscopia atomica, con un panorama esaustivo sulle tecniche in assorbimento, emissione e fluorescenza.

Il capitolo 11 è dedicato alle tecniche di separazione, cromatografiche e non; quindi, accanto alla trattazione delle diverse tecniche di cromatografia gassosa e liquida, sia negli aspetti fondamentali che in quelli strumentali, sono descritte l'elettroforesi capillare e le tecniche di frazionamento in campo e flusso.

Il capitolo 12 riporta principi, dettagli strumentali e tecniche della spettrometria di massa, descrivendo le tre tipologie di interesse: la spettrometria di massa organica, inorganica per l'analisi elementare e a rapporto isotopico.

Il capitolo 13 rimarca come la sinergia fra le tecniche analitiche, realizzata con lo sviluppo delle cosiddette tecniche *ifenate*, consenta di affrontare lo studio di campioni di particolare complessità. In particolare, dimostra come la combinazione dei progressi tecnologici delle tecniche separative e della spettrometria di massa ad alta risoluzione sia stato determinante nello sviluppo delle scienze *-omiche*, che hanno come obiettivo la caratterizzazione dell'intero set di un gruppo di biomolecole di un sistema biologico, quali, ad esempio, proteine (proteomica) o metaboliti (metabolomica) o corredo genetico (genoma).

L'ultimo capitolo è sostanzialmente diviso in due sezioni: la prima parte è dedicata alla chimica bioanalitica e, dopo il richiamo a conoscenze di carattere generale su biomolecole, descrive i metodi di riconoscimento molecolare; la seconda parte è centrata sui sensori e, dopo una panoramica sulle varie tipologie, viene privilegiata la descrizione dei sensori di tipo elettrochimico ed ottico. Gli editori hanno voluto inserire questi argomenti che, tipicamente, sono trattati solo in testi di tipo specialistico, ritenendo che le caratteristiche di selettività, miniaturizzazione, capacità di misure in tempo reale ed in continuo, rendano i saggi bioanalitici ed i sensori strumenti insostituibili in numerosi campi applicativi.

Nei capitoli compaiono spesso *link* e *codici QR* che rinviano alla bibliografia specialistica e agli "APPROFONDI-MENTI": qui vengono trattate tecniche strumentali importanti ma più *di nicchia* nel bagaglio classico del chimico analitico, aggiornamenti strumentali, note applicative di particolare rilievo, che integrano la panoramica sui vari argomenti, per quanti interessati appunto ad approfondire.

Molti capitoli sono corredati con esercizi/problemi a risposta aperta e tutti offrono, con collegamento ad apposito sito, un set di domande a risposta multipla, proposte con l'intento di consentire allo studente un'autovalutazione del livello di preparazione.

RINGRAZIAMENTI

I coordinatori ringraziano tutti i colleghi che si sono spesi nella scrittura del testo, soprattutto quanti hanno coordinato la stesura di alcuni capitoli di particolare complessità. Un sentito ringraziamento va anche ai colleghi Francesco Palmisano (UNIBA), Ilario Losito (UNIBA), Rosalba Calvini (UNIMORE), Gabriele Lando (UNIME) e Roberto Todeschini (UNIMIB) per la precisa e accurata revisione di alcune parti del testo e per i preziosi suggerimenti.

Indice generale

Ca	pitolo 1		1.8.2 Effetto della progettazione (design) 46
Ele	ementi di statistica per la		1.8.3 Valutazione della qualità del modello 471.8.4 Metodo delle aggiunte standard e
	imica analitica	1	metodo dello standard interno 47
	Introduzione	1	1.8.5 Regressione con il metodo di Passing-Bablok 50
	Parametri statistici di posizione e dispersione	3 6 7	1.8.6 Confronto tra metodi analitici
	1.3.2 Parametri di dispersione: intervalli, varianza e deviazione standard Tipologie di errori in chimica analitica	8 11	QR1.2 Appendice 1.2 – Valori critici della distribuzione <i>t</i> di Student
	Legge di propagazione delle varianze Le distribuzioni di probabilità 1.6.1 La distribuzione normale o gaussiana	12 14 14	QR1.3 Appendice 1.3 – Valori critici della distribuzione η (test delle differenze quadratiche medie successive per il controllo della casualità)
	1.6.2 Il teorema del limite centrale	15 15	QR1.4 Appendice 1.4 – Valori critici della distribuzione Q di Dixon
1.7	1.6.4 Le distribuzioni standardizzate I test di significato	16 23	QR1.5 Appendice 1.5 – Valori critici della distribuzione <i>G</i> di Grubbs
	1.7.1 Test per il controllo della casualità 1.7.2 Test per l'identificazione di dati ano-	24	QR1.6 Appendice 1.6 – Valori critici della distribuzione chi-quadrato
	mali (criterio <i>Q</i> e criterio <i>G</i>)	25 27	QR1.7 Appendice 1.7 – Valori critici della distribuzione <i>F</i> di Fisher
	pione (e caso limite su un singolo valore)	29	QR1.8 Esercizi di ricapitolazione QR1.9 Risposte agli esercizi di ricapitolazione
	1.7.5 Test tra medie ottenute da due cam- pioni differenti (e, caso limite, tra una media e un singolo valore)	32	QR1.10 Bibliografia selezionata
	1.7.6 Test per dati accoppiati	34	Capitolo 2
	1.7.7 Test basati sulla variabile chi-quadrato1.7.8 Test basati sulla variabile F di Fi-	36	Validazione dei metodi analitici e controllo qualità ₅₇
	sher-Snedecor	37	2.1 Introduzione 57
1.8	Regressione univariata	41	2.2 Validazione dei metodi di analisi chimica 58
	i.o.i ii iiietodo dei iiiiiiiiii quadrati	41	2.2.1 I metodi di prova 58

2.3	I diversi approcci alla validazione di un me-		3.2 Metodi di estrazione e fondamenti teorici.	106
	todo analitico	60	3.2.1 Metodi di estrazione basati sull'uti-	
2.4	Parametri di qualità	61	lizzo di solventi	109
	2.4.1 Selettività	62	3.2.2 Metodi di estrazione basati sull'uti-	
	2.4.2 Limite di rivelabilità e limite di quan-		lizzo di adsorbenti	115
	tificazione	62	3.2.3 Metodi di estrazione basati sull'uti-	
	2.4.3 Range dinamico e lineare	66	lizzo di membrane	122
	2.4.4 Accuratezza	67	3.2.4 Metodi di estrazione diretti	125
	2.4.5 Robustezza	71	QR3.1 Bibliografia selezionata	
2.5	Incertezza di misura nelle analisi chimiche	71		
	2.5.1 Fondamenti della misurazione. Si-		Capitolo 4	
	gnificato dell'incertezza di misura. Definizioni e riferimenti normativi		Equilibri chimici ed equilibri	
		71		
	2.5.2 Valutazione dell'incertezza di misu-	72	acido-base	127
	2.5.3 Espressione del risultato analitico	73 77	4.1 Introduzione	127
	2.5.4 Ruolo dell'incertezza nella dichiara-	77	4.2 Equilibrio chimico	128
	zione di conformità e nei processi		4.2.1 La legge dell'azione di massa	128
	decisionali	78	4.2.2 Attività e concentrazione	129
2.6	Disegno degli esperimenti per la convalida	, -	4.2.3 Il principio di Le Chatelier	129
	analitica	79	4.2.4 Operazioni sulle costanti di equili-	
	2.6.1 Introduzione	79	brio	130
	2.6.2 Variabili indipendenti o fattori	79	4.2.5 Calcolo delle concentrazioni all'e-	
	2.6.3 Variabile dipendente o risposta	81	quilibrio	132
	2.6.4 Tipologie di disegno sperimentale e		4.3 Equilibri acido-base	138
	corrispondenti modelli matematici	81	4.3.1 II pH	139
	2.6.5 Piano sperimentale	83	4.3.2 Autoprotolisi dell'acqua	139
	2.6.6 Elaborazione dei dati	87	4.3.3 Costante di acidità e costante di ba-	
	2.6.7 Considerazioni finali	91	sicità	140
2.7	Carte di controllo	92	4.3.4 Soluzioni contenenti un acido forte	141
	2.7.1 Carte di Shewhart	92	4.3.5 Soluzioni contenenti una base forte	144
	2.7.2 Costruzione delle carte di controllo	95	4.3.6 Soluzioni contenenti un acido debo-	
	2.7.3 Uso efficace delle carte di controllo	98	le	146
	2.7.4 Altre carte di controllo	100	4.3.7 Soluzioni contenenti una base debo-	
OR	2.1 Box 2.10 Verifica della robustezza di un	meto-	le	153
	di analisi	meto-	4.3.8 Soluzioni contenenti un acido debo-	
			le carico (oppure una base debole carica)	154
Qĸ	2.2 2.8 Chimica analitica di processo		4.3.9 Soluzioni contenenti un acido debo-	154
QR	2.3 Bibliografia selezionata		le e la sua base coniugata	155
			4.3.10 Soluzioni contenenti due (o più) aci-	رر.
Ca	pitolo 3		di forti (oppure due o più basi forti).	159
Ca	mpionamento, pretrattamento		4.3.11 Soluzioni contenenti due (o più) aci-	-
	l campione e tecniche di		di (o due o più basi) di cui almeno	
			uno debole	159
es	trazione	105	4.3.12 Soluzioni contenenti un acido e una	
3.1	Campionamento, pretrattamento e con-		base non coniugata	162
	servazione del campione	105	4.3.13 Il bilancio protonico	168

4.3.14 Frazioni di distribuzione	171 173 174 179	Equ	uilit	lo 5 ori di complessamento ed ori di precipitazione	203
4.4.1 Soluzioni contenenti un acido diprotico	181		Equili 5.1.1	ibri di complessamento Complessi metallo-legante	203 204
4.4.2 Soluzioni contenenti una base diprotica	183	-	5.1.2	Effetto di chelazione ed effetto ma- crociclico	204
4.4.3 Soluzioni contenenti un anfolita 4.4.4 Soluzioni contenenti miscele aci-	184		5.1.3	Costanti di equilibrio a stadi e costanti di equilibrio globali	206
do-base coniugate	186		5.1.4	Calcolo delle concentrazioni all'e-	
4.4.5 Frazioni di distribuzione	188			quilibrio	208
4.4.6 Diagrammi di distribuzione	190		5.1.5	Frazioni di distribuzione	211
4.5 Equilibri acido-base di sistemi poliprotici	191	-	5.1.6	Diagrammi di distribuzione	212
4.5.1 Soluzioni contenenti specie aci-				ibri di complessamento in presenza di	
do-base poliprotiche	192	•	equili	ibri competitivi	214
4.5.2 Frazioni e diagrammi di distribuzione	194	-	5.2.1		
4.6 Chimica in soluzione acquosa dell'anidride				leganti	215
carbonica/idrogenocarbonato/carbonato	196	-	5.2.2	Idrolisi degli ioni metallici	217
4.6.1 Evaporazione	197	-	5.2.3		. 0
4.6.2 Carbonatazione	197			dei complessi	218
4.7 Equilibri acido-base in soluzioni non acquose	199	(di rea	ibri di complessamento in presenza azioni di dissociazione acido-base di	
4.7.1 Autoprotolisi e "pH"	199	I	3røns	sted a pH noto	218
4.7.2 Soluzioni di acidi	200			Concentrazioni condizionali	219
4.7.3 Soluzioni di basi	201			Costanti condizionali	220
4.7.4 Calcolo delle concentrazioni all'e- quilibrio	201	-	5-3-3	Calcolo delle concentrazioni all'equilibrio	225
	tit tal	1	5.3.4	Diagrammi di distribuzione	226
QR4.1 Approfondimento 4.1 – Metodi numer rativi	ici ite-			grandezze utilizzate per quantificare bilità di complessi	226
QR4.2 Approfondimento 4.2 – Diagramma di per acidi deboli e per basi deboli	i Flood		Acido 5.5.1	etilendiamminotetracetico (EDTA) Altri chelanti di interesse chimico-a-	227
QR4.3 Approfondimento 4.3 – Soluzioni cont	enenti			nalitico	228
un acido debole e una base debole non equico trati		I	ecola	ibri di precipitazione di composti mo- ari poco solubili	229
QR4.4 Approfondimento 4.4 – Bilancio proton	nico			Introduzione	229
			5.6.2	Calcolo delle concentrazioni all'e-	
QR4.5 Approfondimento 4.5 – Potere tampo di miscele di coppie acido-base e di acidi/bas protici		<u>-</u>	5.6.3	quilibrio Presenza di equilibri competitivi aci-	230
QR4.6 Approfondimento 4.6 – Il sistema crodicromato	omato/	<u>.</u>	5.6.4	do-base Presenza di equilibri competitivi di complessamento	231
QR4.7 Esercizi di ricapitolazione			5.6.5	Concentrazioni condizionali, costanti condizionali e diagrammi di distri-	
QR4.8 Risposte agli esercizi di ricapitolazione				buzione	236

5.7	Equilibri di precipitazione di sali poco solubili	237		6.2.2	Equilibri competitivi di complessamento
	5.7.1 Miscela di due sali poco solubili			6.2.3	Equilibri competitivi acido-base 27
	aventi uno ione in comune	241	6.3	Stabi	lità di coppie redox in acqua 27
	5.7.2 Presenza di equilibri competitivi aci-		6.4	Diagr	rammi pH/potenziale 27
	do-base	242	6.5	Equil	ibri di ripartizione 27 9
	5.7.3 Presenza di equilibri competitivi di			6.5.1	Costante di ripartizione 286
	complessamento	245		6.5.2	Efficienza estrattiva 28
	5.7.4 Formazione di complessi tra l'anione e il catione del sale	245	6.6		ibri di ripartizione in presenza di rea- competitive
5.8	Soluzioni di idrossidi metallici poco solubili	248			Reazioni acido-base in fase acquo-
	5.8.1 Presenza di idrolisi	249			sa 28
	5.1 Approfondimento 5.1 – Esempio di calcolocciare il diagramma di log eta' in funzione del p eta			6.6.2	Formazione di dimeri in fase organica
OR	5.2 Approfondimento 5.2 – Calcolo delle cor	icen-		6.6.3	Reazioni di complessamento in fase
	tioni all'equilibrio per un acido/base poco sol				acquosa 29
	H noto				Ditizone29
	5.3 Approfondimento 5.3 – Diagrammi di dist ne di composti poco solubili in presenza di equ		6.7	tra dı	ibri di ripartizione per la separazione ue analiti
	npetitivi			6.7.1	Effetto del coefficiente di distribuzione e dei volumi
	5.4 Approfondimento 5.4 – Calcolo di pH e sc			6.7.2	Effetto della ripetizione delle estra-
	di un sale poco solubile nel quale l'anione e/o				zioni 29
tior	ne sottostanno ad equilibri competitivi acido-l	base		6.7.3	Effetto del pH della fase acquosa 300
QR	5.5 Esercizi di ricapitolazione		OR	6.1 A	pprofondimento 6.1 – Diagramma pH/poter
QR	5.6 Risposte agli esercizi di ricapitolazione				il ferro
C_2	pitolo 6				pprofondimento 6.2 – Separazione di du
	uilibri redox ed equilibri di				ıllici mediante variazione del pH sfruttand di ripartizione con ditizone
	partizione	255	QR	6.3 Es	sercizi di ricapitolazione
	Equilibri redox	255	QR	6.4 R	isposte agli esercizi di ricapitolazione
0.1	6.1.1 Analogie e differenze con altre rea-	-))			
	zioni all'equilibrio	256	Ca	pito	lo 7
	6.1.2 Celle galvaniche	257	M	etod	li volumetrici e
	6.1.3 Potenziale elettrodico e potenziali elettrodici standard	260			zioni acido-base30
	6.1.4 Misura, convenzioni e manipolazioni	200	7.1	Meto	odi gravimetrici e metodi volumetri-
	dei potenziali elettrodici	261	,		30
	6.1.5 La condizione di equilibrio	264	7.2	Gene	eralità sulle titolazioni 30
	6.1.6 Calcolo delle concentrazioni all'equili-			7.2.1	Punto di equivalenza e punto di fine . 30 2
	brio in soluzioni contenenti due cop-			7.2.2	Soluzioni a concentrazione accura-
	pie redox	266			tamente nota 30
	6.1.7 Diagrammi di distribuzione	268		7.2.3	Concentrazioni stechiometriche du-
6.2	Equilibri redox in presenza di equilibri				rante una titolazione
	competitivi	270		7.2.4	Grado di titolazione ed errore di ti-
	6.2.1 Equilibri competitivi di precipitazione	270			tolazione30

		Curve di titolazione Titolazioni di stechiometria diversa	308			oprofondimento 7.2 – Calcolo delle derivat urva di titolazione acido forte-base forte
7.3	Titola	da 1:1zioni acido-base di un acido mono-	308			pprofondimento 7.3 – Titolazioni acido debo bole e base debole-acido debole
	protic	co o di una base monoprotica	309			
		Titolazioni acido forte-base forte	310		-	pprofondimento 7.4 – Esattezza e precision olazioni
		Titolazioni base forte-acido forte	314			
		Titolazioni acido debole-base forte	315	QR7.	5 ES	ercizi di ricapitolazione
7 1	, , ,	Titolazioni base debole-acido forte teristiche grafiche delle curve di tito-	319	QR7.	6 Ri	sposte agli esercizi di ricapitolazione
/•4		ne acido-base	321	Cap	ito	lo 8
	7.4.1	Valore del pH al punto di equivalen-		Tito	laz	ioni complescemetriche
		za	321			ioni complessometriche,
	7.4.2	Valore del pH a metà titolazione	322			ioni per precipitazione e
		Pendenza della curva di titolazione	322	tito	laz	ioni redox349
		Salto di pH al punto di equivalenza	325	8.1 T	itola	zioni complessometriche
		Curvatura e flessi	326			L'EDTA come titolante
	7.4.6	Simmetria della curva di titolazione				Titolazione di uno ione metallico 35
	_	rispetto al punto di equivalenza	327	_		Titolazioni di miscele di ioni metallici. 350
		titatività	327		_	Titolazioni per mascheramento 358
7.6		zioni di miscele di due acidi	328			Indicatori colorimetrici
		Acidi di forza molto diversa	329		-	Esattezza e precisione delle titola-
		Acidi di forza simile	331	O	.1.0	zioni
7.7		zioni di altre miscele	331	8	.1.7	Scelta del pH opportuno
7.8		zioni di specie acido-base poliproti-				Titolazioni dirette, di ritorno e per
		Tirletoni di esidi dienari:	332			spostamento
		Titolazioni di acidi diprotici	332	8.2 T	itola	izioni per precipitazione
		Titolazioni di basi diprotiche	333			Titolazioni di stechiometria 1:1
	/.8.3	Titolazioni di anfoliti di sistemi di- protici	222			Titolazioni di stechiometria diversa
	784	Titolazioni di altre specie acido-base	333			da 1:1
	7.0.4	poliprotiche	335	8	.2.3	Titolazioni di miscele
7.0	Titola	zioni acido debole-base debole e	333		_	Controllo del pH
7.5		debole-acido debole	335			Indicatori colorimetrici e metodo di
7.10		di per la determinazione sperimenta-			_	Mohr
		punto di fine in una titolazione	335	8	.2.6	Esattezza e precisione delle titola-
	7.10.1	Indicatori colorimetrici acido-base	335			zioni
	7.10.2	Misura del pH mediante elettrodo	339	8.3 T	itola	zioni redox386
7.11	Esatt	ezza e precisione delle titolazioni	343	8	.3.1	Titolazioni di stechiometria 1:1 386
	7.11.1	Titolazioni acido forte-base forte e		8	.3.2	Titolazioni di stechiometria diversa
		base forte-acido forte	344			da 1:1386
		Altre titolazioni	346	8	.3.3	Presenza di reazioni competitive 389
7.12	Titola	zioni acido-base in solventi non ac-		8	.3.4	Altre titolazioni redox 390
	quosi		347	8	-3-5	Indicatori colorimetrici 39
QR	7.1 Ap	profondimento 7.1 – Utilizzo dell'erro	ore di	8	.3.6	Esattezza e precisione delle titola-
tito	lazion	e per il calcolo delle curve di titolazion	e aci-			zioni
do-	base			8	.3.7	Titolazioni iodometriche indirette 392

QR8.1 Approfondimento 8.1 – Determinaz pH ottimale di una titolazione complessome presenza di indicatore		9.6.1 Applicazioni della potenziometria 46 9.6.2 Applicazioni dei metodi di analisi voltammetrica	64 64
QR8.2 Approfondimento 8.2 – Titolazioni re	edox con	QR9.1 Approfondimento 9.1 – Conduttometria	
dicromato		QR9.2 Approfondimento 9.2 – Coulometria	
QR8.3 Esercizi di ricapitolazione		QR9.3 Approfondimento 9.3 – Strumentazione (ele	et-
QR8.4 Risposte agli esercizi di ricapitolazione	9	trodi di lavoro, celle elettrochimiche) e condizio sperimentali	
Capitolo 9		QR9.4 Esercizi di ricapitolazione	
Chimica elettroanalitica	397	QR9.5 Risposte agli esercizi di ricapitolazione	
9.1 Introduzione e classificazione dei meto elettroanalitici		Capitolo 10	
9.2 Celle elettrochimiche		Metodi spettroscopici	
9.2.1 Celle a concentrazione	-	di analisi	67
sura del potenziale di cella		Capitolo 10A	
9.2.3 Potenziale di giunzione liquida - Ce		Introduzione ai metodi	
le con e senza giunzione liquida 9.3 Metodi elettroanalitici a corrente nulla (spettrochimici – Spettroscopie	
statici)	-		
9.3.1 Potenziometria		·	69
9.4 Metodi elettroanalitici a corrente divers	sa	_	69
da zero (o dinamici)9.4.1 Metodi elettroanalitici a potenzia			69
controllato			70
9.4.2 Cinetica elettrodica: trasferiment di carica all'interfase e trasferimen to di massa. Processi elettrochimic	n-	10A.2 Fondamenti delle spettroscopie moleco-	79 80
mente reversibili e non reversibili 9.4.3 Tecniche a strato di diffusione co	426	10A.2.1 Livelli elettronici, vibrazionali e	8o
stante (Tecniche voltammetriche		-	80
stato stazionario)		10A.2.3 Spettroscopie di emissione 4	.81
9.4.4 Tecniche a strato di diffusione d			82
pendente dal tempo. Curve voltan metriche con picco9.4.5 Metodi di titolazione: titolazioni	443	10A.3 Spettroscopie di assorbimento moleco- lare nell'ultravioletto, nel visibile e nel vicino infrarosso4	85
cui vi è passaggio di corrente in cell 9.5 Cenni sulla strumentazione e condizio	a 454	10A.3.1 Spettroscopie di assorbimento molecolare nell'ultravioletto e	כיי
sperimentali		to a state	85
9.5.1 Sistemi elettrodici		10A.4 Fotoluminescenza: fluorescenza moleco-	
9.5.2 Solventi ed elettroliti di supporto	=		09
9.5.3 Caratteristiche elettrochimiche del s			09
stema solvente-elettrolita-elettrodo			23
9.6 Campi di applicazione delle tecniche ele		10A.4.3 Chemiluminescenza 5. 10A.5 Spettroscopie vibrazionali: assorbimento	25
troanalitiche	464		26

QR10A.1 Paragrafi 10A.5.1-10A.5.8 frarosso e spettroscopia Raman: strumentali ed esempi applicativi		10B.6.4 Interferenze e segnale di fondo. 10B.6.5 Considerazioni conclusive sulla AFS	571 572
QR10A.2 Bibliografia seleziona	ta	QR10B1 Approfondimento 10B.1 – Nebulizzatori mere di nebulizzazione	e ca-
Capitolo 10B		QR10B2 Approfondimento 10B.2 – Esempio app	olica-
Spettroscopie atomic	he 529	tivo della tecnica combinata HPLC-ICP	
10B.1 Energia, specie atomiche, 10B.1.1 Spettri atomici e		QR10B3 Approfondimento 10B.3 – Cause di el nella misura strumentale	rrore
righe spettrali 10B.2 Equazione di Boltzmann	e popolazione	QR10B4 Approfondimento 10B.4 – Interferenze miche e metodo delle aggiunte standard	chi-
dei livelli energetici 10B.3 Spettroscopia di emiss		Capitolo 11	
(Atomic Emission Spectrosc		•	
10B.3.1 Sorgente a plasm		Tecniche separative	573
10B.3.2 Introduzione del 0	-	11.1. Cromatografia	573
10B.3.3 Sistemi alternativ ne del campione 10B.3.4 Selettori di lungh	543	11.1.1 Introduzione alla cromatografia11.1.2. L'influenza della termodinamica in cromatografia: il concetto di riten-	573
analisi multielem		zione	575
10B.3.5 Caratteristiche, vo della spettroscop	antaggi e limiti pia atomica di	11.1.3 L'influenza della cinetica in cromatografia: la forma del picco e il concet-	0
emissione		to di efficienza 11.1.4 Equazione di van Deemter	578 581
10B.4 Spettroscopia di assorbin (Atomic Absorption Spectro		11.1.5 Selettività, risoluzione e capacità di	501
10B.4.1 Introduzione		picco	582
10B.4.2 Assorbimento di	= -	11.1.6 Analisi qualitativa e quantitativa	583
parte degli atomi		11.2 Cromatografia liquida	585
10B.4.3 Schema di uno s _i	pettrometro di	11.2.1 Strumentazione	585
assorbimento ato	2.0	11.2.2 Principali tecniche HPLC	592
10B.4.4 Parametri di quali		11.2.3 Cromatografia preparativa	601
basate su AAS	-	11.2.4 Miniaturizzazione della cromatogra- fia liquida	603
10B.4.5 Applicazioni della di assorbimento a			604
10B.5 Le interferenze nella spet	-	<u>. </u>	604
mica di emissione e di ass		11.3.2 Strumentazione	605
10B.5.1 Interferenze fisich	-	11.3.3 Iniettori per gascromatografia	605
10B.5.2 Interferenze chim	=	11.3.4 Rivelatori per gascromatografia	610
10B.5.3 Interferenze da io	onizzazione 565	11.3.5 Colonne per gascromatografia	617
10B.5.4 Interferenze spet			620
10B.6 Spettroscopia di fluoresce	enza atomica 567	11.3.7 Allargamento di banda in gascroma-	
10B.6.1 Introduzione	567	tografia - Teoria della velocità	629
10B.6.2 Emissione di radi		11.3.8 Applicazioni della gascromatografia	631
rescenza	= ,	11.4 Cromatografia a fluido supercritico (SFC)	632
10B.6.3 Schema di uno sp	•	11.4.1 Applicazioni	633
fluorescenza aton	nica 569	11.5 Cromatografia chirale	634

11.6 Tecniche separative non cromatografiche: elettroforesi capillare	12.7 Spettrometria di massa per l'analisi elementare: principi e strumentazione
QR11.1 Approfondimento 11.1 – Iniettori e <i>liner</i> per gascromatografia QR11.2 Approfondimento 11.2 – Allargamento di banda	QR12.1 Approfondimento 12.1 – Confronto tra massa monoisotopica, massa molecolare e massa nominale di alcuni elementi e composti di varia natura
QR11.3 Paragrafi 11.7.2-11.7.7 – Tecniche di frazionamento in campo e flusso QR11.4 Bibliografia selezionata	QR12.2 Approfondimento 12.2 – Applicazioni stru mentali della spettrometria di massa per l'analisi ele mentare
Capitolo 12	QR12.3 Paragrafo 12.8 – Spettrometria di massa a rapporto isotopico: principi e strumentazione
Spettrometria di massa 647	Capitolo 13
12.1 Introduzione alla spettrometria di massa 647 12.2 Spettrometria di massa organica: principi e	Tecniche ifenate701
strumentazione	13.1 Introduzione – Fondamenti
zatori ibridi	13.2.4 Acquisizione, elaborazione e interpretazione dei dati
12.4 Data system: controllo dello spettrometro di massa, acquisizione e memorizzazione degli spettri di massa	stenti
massa	QR13.1 Approfondimento 13.1 – Esempi di applicazio ni della GC-MS classificati sulla base dell'analizzatore di massa
12.6.1 Analisi qualitativa: determinazione della formula empirica	QR13.2 Bibliografia selezionata

Capitolo 14	QR14.5 Approfondimento 14.5 – (Bio)Sensori SERS
Chimica bioanalitica e	QR14.6 Paragrafo 14.2.4 – Biosensori piezoelettrici
biosensori 717	
14.1 Metodi bioanalitici	Appendici QRApp.A Valori delle costanti di acidità (pK_a) in soluzione acquosa per vari acidi raggruppati per tipologia ed elencati in ordine alfabetico. Per ogni acido poliprotico, la prima costante riportata è la pK_{a1} , la seconda è la pK_{a2} , e così via. QRApp.B Costanti di formazione ($log\beta$) dei complessi MY che si formano tra vari ioni metallici M^{r+} ed EDTA (Y^{4-}) in soluzione acquosa (le costanti sono riferite alla reazione $M^{r+} + Y^{4-} \rightleftharpoons MY^{r-4}$)
QR14.1 Approfondimento 14.1 – Produzione di anticorpi	QRApp.C Costanti di solubilità (K_s) di sali e idrossidi poco solubili in soluzione acquosa
QR14.2 Approfondimento 14.2 – Struttura degli acidi nucleici e quantificazione del DNA	QRApp.D Semireazioni redox e valori dei rispettivi potenziali elettrodici standard (<i>E</i> °) espressi in volt
QR14.3 Approfondimento 14.3 – Come si misura il tempo di decadimento	QRApp.E Appendice E – Tavola perioodica
QR14.4 Approfondimento 14.4 – (Bio)Sensori cellulari basati su tecnologia del <i>gene reporter</i>	Indice analitico

Metodi volumetrici e titolazioni acido-base

7.1 Metodi gravimetrici e metodi volumetrici

La conoscenza delle reazioni all'equilibrio viste nei Capitoli dal 4 al 6 ha permesso, fin dal secolo XIX, lo sviluppo di metodi analitici basati su tali equilibri. Questi metodi sono denominati *classici*, per distinguerli da quelli strumentali (inventati solo dopo la metà del XX secolo e qui trattati nei Capitoli dal 9 in poi), e possono essere suddivisi in due grandi categorie: i *metodi gravimetrici* (dal latino *gravis*, pesante), basati su misure di massa, e i *metodi volumetrici*, che invece sono basati su misure di volume.

I metodi gravimetrici, nella loro formulazione più generale, consistono nell'aggiunta di un eccesso di reattivo alla soluzione contenente l'analita (la sostanza da analizzare). Il reattivo reagisce con l'analita producendo un composto poco solubile che può essere separato dalla soluzione attraverso una filtrazione. La quantità di analita può essere quindi determinata mediante una pesata accurata del prodotto della reazione. Pur se concettualmente molto semplici, i metodi gravimetrici soffrono di alcune limitazioni pratiche molto serie, che includono in particolare la lentezza delle procedure e la facilità di incorrere in errori molto rilevanti nell'analisi. Per tali motivi essi, pur utilizzati in passato, rivestono oggigiorno un interesse molto limitato. In questo testo non saranno trattati i metodi gravimetrici.

I metodi volumetrici, al contrario, restano a tutt'oggi molto utilizzati in virtù della loro semplicità, economicità, rapidità e della elevata accuratezza dei risultati ottenuti. Il presente capitolo e il Capitolo 8 sono dedicati ai metodi volumetrici di analisi, più semplicemente denominati *titolazioni*.

7.2 Generalità sulle titolazioni

Il metodo delle titolazioni prevede di aggiungere gradualmente una soluzione al campione contenente l'analita. La soluzione aggiunta contiene una sostanza, denominata *titolante*, che ha una concentrazione (*titolo*) accuratamente nota. Il titolante è scelto in maniera tale da reagire con l'analita (anche detto *titolando*) secondo la *reazione di titolazione*:

$$A + T \rightleftharpoons P \tag{7.1}$$

dove A è l'analita, T è il titolante e P è il prodotto (o i prodotti) della reazione. Ogni titolazione può avere stechiometria pari a 1:1 se ogni mole di analita è consumata da una mole di titolante, come la reazione (7.1); in alternativa la reazione di titolazione ha stechiometria diversa da 1:1.

La **Figura 7.1** mostra l'apparato sperimentale richiesto in una titolazione, che comprende essenzialmente due oggetti di vetreria, una buretta e una beuta (o un bicchiere). Nel seguito si assumerà sempre che il titolante sia contenuto nella buretta e l'analita nella beuta, come solitamente avviene nella pratica sperimentale (è comunque possibile condurre una titolazione anche ponendo il titolante nella beuta e l'analita in buretta). La buretta permette la misura accurata del volume erogato e regola la velocità di aggiunta del titolante nella beuta mediante un rubinetto posto nella parte inferiore.

La reazione (7.1) può essere una qualsiasi tra quelle viste nei Capitoli dal 4 al 6. Le titolazioni sono classificate in base alla natura della (7.1) e vi sono quindi le titolazioni acido-base, le titolazioni complessometriche, le titolazioni per precipitazione e le titolazioni redox (non esistono, invece, le ipotetiche "titolazioni di ripartizione", poiché l'equilibrio di ripartizione (6.33) non prevede una reazione tra due componenti).

7.2.1 Punto di equivalenza e punto di fine

Il punto di equivalenza di una titolazione, convenzionalmente abbreviato con la sigla PE, è la situazione nella quale il numero di moli di titolante aggiunte nella beuta, n_{τ} , è stechiometricamente equivalente al numero di moli di analita inizialmente presenti nella beuta, n_{α} . In tale condizione, nelle titolazioni di stechiometria 1:1 si ha per definizione:

al PE
$$n_{\rm T} = n_{\rm A}$$
 $C_{\rm T} V = C_{\rm A} V^{\rm o}$ (7.2)

dove V° è il volume iniziale della soluzione contenente l'analita (presente nella beuta), v è il volume di titolante aggiunto mediante la buretta, C_A è la concentrazione stechiometrica di analita (sperimentalmente incognita) nella soluzione da titolare e C_T è la concentrazione stechiometrica di titolante nella soluzione in buretta (**Figura 7.1**). Il PE

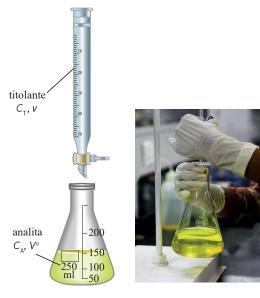


Figura 7.1 Vetreria richiesta per condurre una titolazione (disegno e foto) e simbologia utilizzata nei Capitoli 7 e 8 del testo.

ha un significato intuitivo ben definito: considerato che, come si vedrà meglio nel prosieguo del capitolo, le reazioni di titolazione (7.1) sono fortemente spostate verso destra, il PE rappresenta la situazione nella quale l'analita è stato completamente consumato dal titolante.

L'utilità pratica del PE si esplica nel fatto che esso permette la quantificazione dell'analita. Se si misura il volume di titolante aggiunto al PE di una titolazione, si può calcolare $n_{\rm T}$ (numero di moli del titolante) dato dal prodotto tra il volume e la concentrazione stechiometrica di titolante. Noto $n_{\rm T}$, si ricava immediatamente la quantità incognita di analita (numero di moli $n_{\rm A}$). I calcoli richiesti per calcolare $n_{\rm A}$ sono molto semplici e sono illustrati nel Box 7.1.

BOX 7.1

10 mL di una soluzione di analita A presenti in una beuta sono titolati da un titolante T a concentrazione $C_T=0.01$ M (la stechiometria della reazione A + T sia 1:1). Il PE si ha con l'aggiunta di 17.1 mL di soluzione di T. Calcolare il numero di moli di A presenti inizialmente nel campione e la sua concentrazione.

 n_{τ} è pari a $C_{\tau}v$ e al PE risulta pari a 1.71 · 10⁻⁴ moli. Per la (7.2) queste sono anche le moli di A:

$$n_{A} = 1.71 \cdot 10^{-4} \text{ moli.}$$

La concentrazione di A è pari alle moli diviso per il volume iniziale: $C_h = 1.71 \cdot 10^{-2} \,\mathrm{M}$

Si deve infine osservare che il PE di una titolazione è un valore vero; per quanto visto nel capitolo 1, esso non può essere sperimentalmente accessibile. In una titolazione è possibile ricavare solo una stima del PE, che è chiamata punto di fine (PF). Nel seguito si parlerà di PE quando si considerano valori teorici ottenuti da calcoli, e di PF quando invece si considerano risultati sperimentali oppure metodi per stimare il PE.

7.2.2 Soluzioni a concentrazione accuratamente nota

Poiché la quantità di analita incognita (n_A) si ricava dalle moli di titolante (n_T) aggiunte al PF e poiché a loro volta queste si ottengono da C_T , ne consegue che un'eventuale inaccuratezza di C_T si propagherebbe su n_A , cioè, se C_T fosse incerto anche n_A lo sarebbe (cfr. Paragrafo 1.5, propagazione delle varianze). È necessario quindi garantire che C_T sia noto con la massima accuratezza possibile per poter ottenere dati analitici affidabili per n_A . Le soluzioni aventi una concentrazione accuratamente nota di una determinata sostanza sono dette **soluzioni standard**.

La preparazione di una soluzione standard richiede innanzitutto che la sostanza sia pesata utilizzando una bilancia cia analitica, che è una bilancia (oggigiorno quasi esclusivamente di tipo digitale) caratterizzata da una risoluzione non superiore a (non peggiore di) o.1 mg e anche da ottime esattezza e precisione. Di norma il titolante non viene poi utilizzato tal quale, ma disciolto in una soluzione; a tale scopo la quantità pesata va trasferita in un recipiente avente a sua volta un volume molto accurato, il matraccio, e sciolta col solvente (solitamente acqua deionizzata o ultrapura).

Affinché la soluzione di titolante sia standard, è anche necessario che esso sia disponibile con una purezza elevatissima (almeno 99.9%) oppure che sia purificabile con facilità (ad esempio mediante un passaggio in stufa). Il titolante deve, inoltre, essere stabile all'aria, perlomeno nei tempi richiesti per preparare la soluzione e per il suo utilizzo, nonché in acqua (o nel solvente in cui si conduce la titolazione). Le sostanze che presentano questi requisiti sono dette *standard primari* e solo tali sostanze possono essere utilizzate per preparare soluzioni standard. È necessario sottolineare che i due requisiti dell'elevata purezza e della stabilità all'aria non sono facilmente verificabili, tanto che le sostanze considerabili come standard primari sono relativamente poche.

In vecchi libri di testo di analisi chimica può essere riportato un ulteriore requisito richiesto alle sostanze per essere considerate standard primari: avere un'elevata massa molecolare (MM). A parità di moli, infatti, una sostanza con elevata MM richiede di pesare masse maggiori di quelle di sostanze con MM più basse, e una pesata elevata mini-

mizza l'errore relativo (pari alla risoluzione della bilancia, che è una costante, divisa per la massa pesata), e quindi l'incertezza su n..

Oggigiorno il requisito di un'elevata MM risulta poco rilevante, data la ottima (piccola) risoluzione che presentano le comuni bilance analitiche digitali. Resta comunque valida la raccomandazione che le soluzioni standard siano preparate pesando quantità sufficientemente elevate (pari ad almeno mille volte la risoluzione) di standard primario, in modo da non introdurre rilevanti errori relativi nella pesata.

Le soluzioni costituite da sostanze che non sono standard primari possono comunque essere usate per condurre titolazioni se esse sono state preventivamente sottoposte alla standardizzazione, cioè se per esse è stata determinata la concentrazione accurata (come suggerisce il termine, la standardizzazione rende standard una soluzione che inizialmente non lo è). La standardizzazione si esegue titolando la soluzione da standardizzare con un'altra soluzione costituita da uno standard primario. Si ottiene in tal modo il numero accurato delle moli e quindi la concentrazione della soluzione in esame; tale soluzione può poi essere utilizzata come titolante per gli analiti di interesse.

Svariate ditte commercializzano soluzioni standard di molti titolanti comuni, rendendo quindi non necessaria la loro standardizzazione. Tuttavia, poiché il costo di tali soluzioni supera quello richiesto per operare la standardizzazione, esse risultano convenienti solo in laboratori di analisi aventi un'elevata produttività.

Nel seguito, almeno nei casi più comuni, sarà evidenziato se i titolanti menzionati sono standard primari o se invece necessitano di una standardizzazione preventiva.

7.2.3 Concentrazioni stechiometriche durante una titolazione

Come tutte le reazioni all'equilibrio, anche per la reazione di titolazione (7.1) è possibile calcolare la concentrazione all'equilibrio per tutte le specie coinvolte nella reazione stessa. Si possono scrivere le leggi dell'azione di massa, i bilanci di materia e il bilancio di carica (o protonico, o elettronico), e operare le approssimazioni più opportune in dipendenza delle proprietà della reazione di titolazione. Il calcolo e i risultati sono sempre riferiti alla beuta, sede della reazione stessa (nella buretta non hanno luogo reazioni).

Vi è un'unica importante differenza da considerare rispetto a quanto fatto nei Capitoli dal 4 al 6: il volume totale nella beuta aumenta, e di conseguenza le concentrazioni stechiometriche cambiano, al procedere della titolazione. In particolare, la concentrazione stechiometrica di analita diminuisce per effetto della diluizione, mentre quella di titolante presente nella beuta, inizialmente nulla, aumenta.

BOX 7.2

Si raccomanda ancora una volta di non confondere le concentrazioni stechiometriche con le concentrazioni all'equilibrio. Ad esempio, durante la titolazione la concentrazione stechiometrica di A nella beuta è attesa diminuire per il solo effetto della diluizione, mentre quella all'equilibrio diminuisce anche per il decorso della reazione di titolazione (7.1).

Le concentrazioni stechiometriche di analita, $C_{A,i,}$ e titolante, $C_{T,i,}$ presenti nella beuta dopo l'aggiunta *i*-esima di titolante cambiano come segue:

$$C_{A,i} = \frac{C_A V^{\circ}}{V^{\circ} + V} \qquad C_{T,i} = \frac{C_T V}{V^{\circ} + V}$$
 (7.3)

BOX 7.3

Ad esempio, se la beuta contiene 20 mL di una soluzione di A 0.01 M e in essa si aggiungono 5 mL di una soluzione contenente T 0.02 M, dalle equazioni (7.3) si può calcolare che le nuove concentrazioni stechiometriche nella beuta che si hanno dopo l'aggiunta sono pari a:

$$C_{A,i} = 0.008 \text{ M}, C_{T,i} = 0.004 \text{ M}$$

Dalla (7.3) consegue che al PE deve anche essere:

$$C_{\mathsf{T},i} = C_{\mathsf{A},i} \tag{7.4}$$

7.2.4 Grado di titolazione ed errore di titolazione

Le equazioni (7.3) mostrano che $C_{A,i}$ e $C_{T,i}$ dipendono sia da v che da V° ; ovviamente anche le concentrazioni all'equilibrio devono dipendere dai volumi. V° è una costante nell'ambito della titolazione, per cui la variabile in funzione della quale sono espresse le concentrazioni è v (variabile indipendente).

Una variabile indipendente alternativa, rigorosa e più semplice al tempo stesso, è il grado di titolazione, o frazione titolata. Il grado di titolazione si indica con Φ (talvolta con x) e per titolazioni di stechiometria 1:1 è definito dalla relazione:

$$\Phi = \frac{n_{\rm T}}{n_{\rm A}} = \frac{C_{\rm T} v}{C_{\rm A} V^{\circ}} = \frac{C_{\rm T,i}}{C_{\rm A,i}}$$
(7.5)

 Φ è un numero puro, talvolta espresso in percentuale, che indica quanto titolante è stato aggiunto rispetto all'analita presente all'inizio della titolazione. La comodità della definizione di Φ consiste nel fatto che i suoi valori dipendono dal rapporto delle concentrazioni stechiometriche e dei volumi, ma non dipendono dai singoli valori e dalla natura di titolante e analita. Il grado di titolazione rappresenta dunque una variabile normalizzata che conferisce generalità alla trattazione e sarà utilizzato in questo capitolo e nel successivo. La scelta di ν come variabile indipendente, che invece è preferita in ambito sperimentale, non comporta comunque alcuna modifica delle proprietà delle titolazioni così come verranno definite nel seguito, in quanto Φ e ν sono direttamente proporzionali tra loro a meno di costanti, come mostra la (7.5).

BOX 7.4

Calcolare il valore di Φ nella situazione descritta dal Box 7.3.

 $n_{_{\rm T}}$ è pari a $C_{_{\rm T}} v$ e risulta pari a 10^{-4} moli; $n_{_{\! A}}$ è dato da $C_{_{\! A}} V^0$ e vale $2 \cdot 10^{-4}$ moli. Quindi si ha:

$$\Phi = 0.5 (0.50\%).$$

Lo stesso risultato si ottiene ovviamente anche rapportando i valori di $C_{T,i}$ e $C_{A,i}$ ottenuti nel Box 7.3, e indica che è stato aggiunto un numero di moli di titolante pari al 50% delle moli iniziali di analita.

Dalle equazioni (7.2) e (7.5) segue che al PE si ha $\Phi = 1$. In generale quindi, secondo la definizione di Φ si ha:

conversione esterna; questo fenomeno è comunque più frequente per alte concentrazioni. Il secondo processo è l'auto-assorbimento: questo si verifica quando la lunghezza d'onda della radiazione emessa corrisponde a quella di un salto energetico di una banda di assorbimento; in questo caso l'emissione di fluorescenza non ha luogo perché viene assorbita dalla molecola stessa.

Microscopie e fluorescenza

La combinazione tra spettroscopia di fluorescenza e microscopia ottica ha aperto la strada a numerosi e rilevanti esperimenti, soprattutto nello studio di sistemi di interesse biologico, al punto che la presenza di un microscopio a fluorescenza è scontata in qualsiasi laboratorio biomedico, biochimico o biofisico.

Un microscopio a fluorescenza per molti versi rappresenta la somma di un microscopio ottico e di uno spettrofluorimetro. La radiazione proveniente da una sorgente luminosa viene selezionata in termini di lunghezza d'onda e focalizzata sul campione. La luce emessa dal campione a causa della fluorescenza viene quindi raccolta, selezionata in modo da eliminare la radiazione usata per l'eccitazione e quindi quantificata utilizzando un rivelatore. Sorgente, selettori/monocromatori, lenti e rivelatori sono in tutto e per tutto analoghi a quelli utilizzati in uno spettrofluorimetro. La tipologia di microscopio comunemente usata è il **microscopio invertito** (altrimenti detto a epifluorescenza), chiamato così in quanto gli obiettivi si trovano al di sotto del campione e la radiazione di eccitazione colpisce il campione dal basso, mentre la luce bianca utilizzata per le misure in trasmissione in campo chiaro proviene tipicamente dall'alto (**Figura 10A.55**).

Un componente ottico fondamentale per il funzionamento di questo tipo di microscopio è il cosiddetto cubo per fluorescenza, rappresentato in **Figura 10A.55b**. Questo dispositivo viene costruito combinando tre dispositivi ottici. Il filtro di eccitazione seleziona la radiazione proveniente dalla sorgente, lasciando passare unicamente la banda spettrale utilizzata per eccitare il campione. La radiazione passante colpisce uno specchio dicroico, venendo indirizzata verso il campione. La radiazione di fluorescenza viene emessa in tutte le direzioni, inclusa la direzione dello specchio dicroico da cui proviene la radiazione di eccitazione. Lo specchio dicroico è trasparente rispetto alla radiazione dovuta alla fluorescenza, che raggiunge quindi il rivelatore (tipicamente una fotocamera CCD).

Nella microscopia a fluorescenza convenzionale il segnale di fluorescenza che raggiunge il rivelatore non proviene da un unico piano focale: infatti, quando il campione ha uno spessore maggiore rispetto al piano focale dell'obiettivo del microscopio, il segnale proviene da diverse profondità all'interno del campione. Un miglioramento estremamente rilevante della tecnica è stato apportato dall'introduzione della **geometria confocale**: grazie alla presenza di un foro stenopeico (detto anche apertura confocale) posto ad una distanza opportuna in prossimità del rivelatore, il segnale di fluorescenza proveniente dal piano focale viene registrato, mentre il segnale fuori fuoco, proveniente da diverse profondità all'interno del campione, viene bloccato permettendo l'ottenimento di immagini

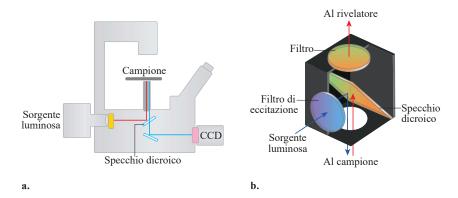
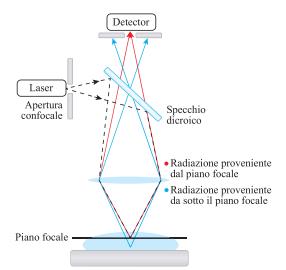



Figura 10A.55 (a) Schema di un microscopio invertito per misure in fluorescenza. (b) Cubo per microscopia in fluorescenza (la visione è rovesciata rispetto alla posizione occupata nel microscopio).

Figura 10A.56 Geometria utilizzata per la microscopia in fluorescenza confocale: la radiazione emessa da regioni del campione al di fuori del piano focale non raggiunge il rivelatore grazie all'effetto barriera dell'apertura confocale.

nettamente più risolte (**Figura 10A.56**). Sebbene la microscopia confocale fosse stata descritta già a metà anni '50 del secolo scorso, è stata ampiamente adottata solo a partire dalla fine degli anni '70, in parallelo allo sviluppo delle sorgenti laser ed alle tecniche di scansione.

L'approccio confocale consente non solo di raccogliere la radiazione emessa da un singolo piano, ma anche di illuminare/osservare un volume ridotto del campione, tipicamente nell'ordine di pochi femtolitri. L'investigazione di un volume così piccolo di una soluzione diluita di fluorofori (vale a dire, un numero relativamente piccolo di molecole fluorescenti) può dare origine a fluttuazioni nel segnale di fluorescenza a causa della diffusione browniana di particelle dentro e fuori il volume di osservazione (Figura 10A.57). Questa è l'idea alla base delle spettroscopie basate sulla fluttuazione della fluorescenza (Fluorescence Fluctuation Spectroscopies, FFS); tuttavia tali fluttuazioni possono derivare anche da altre cause, quali ad esempio variazioni della resa quantica legate a variazioni conformazionali di un fluoroforo o a fluttuazioni intrinseche del fluoroforo stesso. Nonostante le fluttuazioni di fluorescenza possano apparire all'occhio inesperto come rumore casuale, spesso la loro analisi permette di estrarre molte informazioni sui sistemi oggetto di studio.

10A.4.2 Fosforescenza

La fosforescenza è un altro fenomeno di fotoluminescenza. Capire la distinzione fra fluorescenza e fosforescenza richiede una comprensione degli spin degli elettroni e della differenza fra stato di singoletto e stato di tripletto. Le molecole ordinarie (che non abbiano radicali liberi) si trovano nello stato fondamentale con spin elettronici appaiati.

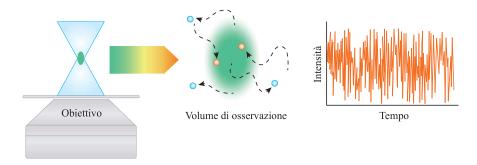


Figura 10A.57 Fluttuazioni nel segnale di fluorescenza a causa della diffusione Browniana di particelle dentro e fuori il volume di osservazione.

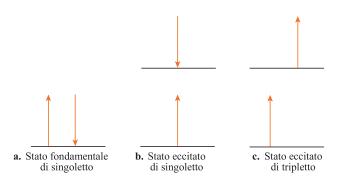


Figura10A.58 Stati di spin elettronico delle molecole. In (a) viene mostrato lo stato elettronico fondamentale. Nello stato più basso di energia o stato fondamentale, gli spin sono sempre appaiati: questa configurazione si dice stato di singoletto. In (b) e (c) sono mostrati gli stati elettronici eccitati. Se gli spin rimangono appaiati nello stato eccitato, la molecola è in uno stato eccitato di singoletto (b). Se gli spin diventano spaiati, la molecola è in uno stato eccitato di tripletto (c).

Uno stato elettronico molecolare in cui tutti gli spin elettronici sono appaiati si dice stato di singoletto. Lo stato fondamentale di un radicale libero, d'altra parte, è uno stato di doppietto, perché l'elettrone spaiato può assumere due orientazioni in un campo magnetico.

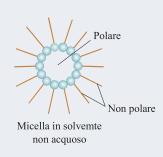
Quando uno di una coppia di elettroni in una molecola viene eccitato ad un livello di energia più elevato, può essere prodotto uno stato di singoletto o di tripletto. Nello stato di singoletto eccitato, lo spin dell'elettrone promosso è ancora opposto a quello dell'elettrone rimanente. Nello stato di tripletto, invece, gli spin dei due elettroni diventano spaiati e sono quindi paralleli. Questi stati possono essere rappresentati come illustrato nella **Figura 10A.58**. Lo stato di tripletto eccitato è meno energetico del corrispondente stato di singoletto eccitato.

La *fluorescenza* delle molecole coinvolge una transizione da un singoletto eccitato allo stato di singoletto fondamentale. Questa transizione è altamente probabile e quindi la vita di uno stato di singoletto eccitato è molto breve (10⁻⁵ secondi o meno). La *fosforescenza* molecolare, d'altra parte, comporta una transizione da uno stato di tripletto eccitato allo stato di singoletto fondamentale. Poiché questa transizione produce un cambiamento nello spin degli elettroni, è molto meno probabile. Quindi, lo stato di tripletto ha una vita molto più lunga (tipicamente da 10⁻⁴ a qualche secondo). Fosfori allo stato solido vengono usati per rivestire lo schermo di tubi catodici e permettono di osservare l'azione dei fasci di elettroni in molti oscilloscopi, televisori e monitor di computer.

La lunga durata della fosforescenza è anche uno dei suoi svantaggi. Infatti, a causa di questa lunga durata, processi non radiativi possono competere con essa per disattivare lo stato eccitato. Pertanto, l'efficienza del processo di fosforescenza, e di conseguenza l'intensità di fosforescenza, è relativamente bassa. Per aumentare questa efficienza, la fosforescenza viene osservata comunemente a bassa temperatura in mezzi rigidi, come i vetri. Negli ultimi anni, sono state messe a punto strategie per misurare la fosforescenza a temperatura ambiente. In particolare, la molecola di cui si vuole monitorare la fosforescenza viene adsorbita su una superficie solida o confinata a livello molecolare (per esempio nelle cavità delle ciclodestrine o in micelle) in modo da proteggere il *fragile* stato di tripletto.

BOX 10A.10 SISTEMI MICELLARI: FOSFORESCENZA E FLUORESCENZA

Nella fosforescenza a temperatura ambiente, lo stato di tripletto dell'analita può essere protetto incorporando l'analita stesso in una micella formata da un tensioattivo. Nelle soluzioni acquose le micelle hanno un nucleo apolare, perché il tensioattivo tende a esporre la testa polare verso il solvente. Il contrario si verifica nei solventi non polari.


La capacità delle micelle di influenzare le proprietà ottiche di alcune molecole è usata anche nei fluorofori per determinare la concentrazione critica micellare di un tensioattivo: in questi esperimenti, la concentrazione del tensioattivo viene progressivamente aumen-

tata in presenza di un fluoroforo, fino a che non si osserva una variazione delle proprietà di emissione di quest'ultimo. La concentrazione a cui questo avviene, corrisponde alla concentrazione minima a cui si ha formazione di micelle da parte del tensioattivo.

Struttura delle micelle

Micella in solvemte acquoso

A causa della sua debole intensità, la fosforescenza è molto meno utilizzata rispetto alla fluorescenza. Tuttavia, la fosforimetria viene utilizzata per la determinazione di specie organiche e biochimiche, tra cui acidi nucleici, amminoacidi, pirina e pirimidina, enzimi, idrocarburi policiclici e pesticidi. Anche molti composti farmaceutici presentano segnali di fosforescenza misurabili.

La strumentazione per la fosforescenza è un po' più complessa di quella per la fluorescenza. Di solito un fosforimetro consente la discriminazione della fosforescenza dalla fluorescenza ritardando la misurazione della fosforescenza fino a quando la fluorescenza è decaduta quasi a zero. Molti spettrofluorimetri sono dotati di accessori, chiamati fosforoscopi, che consentono di utilizzare lo stesso strumento per le misure di fosforescenza.

10A.4.3 Chemiluminescenza

La chemiluminescenza viene prodotta quando una reazione chimica genera una molecola eccitata elettronicamente, che emette luce quando ritorna allo stato fondamentale. Le reazioni di chemiluminescenza si riscontrano in un certo numero di sistemi biologici, dove il processo è spesso chiamato *bioluminescenza*. Esempi di specie che mostrano bioluminescenza sono: la lucciola, la viola del pensiero, alcune meduse, batteri, protozoi e crostacei.

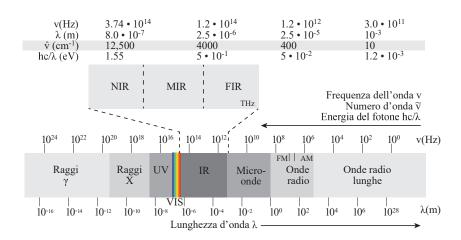
La lucciola produce luce dal fenomeno della bioluminescenza. Diverse specie di lucciole lampeggiano con frequenze diverse e questa frequenza è utilizzata come metodo di riconoscimento, perché le lucciole si accoppiano solo con la propria specie.

Una caratteristica interessante della chemiluminescenza per usi analitici è la semplicità della strumentazione. Poiché non è necessaria alcuna sorgente esterna di radiazione per l'eccitazione, lo strumento può consistere solo in un recipiente di reazione e in un tubo fotomoltiplicatore. Generalmente, non è necessario alcun dispositivo di selezione della lunghezza d'onda perché l'unica fonte di radiazione è la reazione chimica.

I metodi di chemiluminescenza sono noti per la loro elevata sensibilità. I limiti di rivelazione tipici variano da parti per milione (ppm) a parti per miliardo (ppb) o inferiore. Le applicazioni includono la determinazione di gas, come ossidi di azoto, ozono e composti dello zolfo, determinazione di specie inorganiche, come il perossido di idrogeno e alcuni ioni metallici, tecniche di immunodosaggio, DNA probe assay e metodi PCR (*Polymerase Chain Reaction*).

Diversi analizzatori commerciali per la determinazione dei gas si basano sulla chemiluminescenza; ad esempio, la concentrazione di monossido di azoto (NO) presente in aria viene determinata mediante questa tecnica. Per la determinazione di NO, l'aria in esame viene miscelata con ozono in una cella di reazione. L'ozono reagisce rapidamente con il monossido di azoto formando biossido di azoto eccitato e instabile (NO_2^*) che, ritornando nel suo stato fondamentale (NO_2) , emette una radiazione elettromagnetica ultravioletta $(h\nu)$.

$$\begin{array}{c} \mathsf{NO} \, + \, \mathsf{O}_{_{3}} \, \rightarrow \, \mathsf{NO}_{_{2}}^{\star} \, + \, \mathsf{O}_{_{2}} \\ \mathsf{NO}_{_{2}}^{\star} \, \rightarrow \, \mathsf{NO}_{_{2}} \, + \, \mathsf{h}\nu \end{array}$$


La radiazione di chemiluminescenza viene misurata mediante un rivelatore ed è direttamente correlata alla concentrazione di monossido di azoto presente in aria.

La determinazione della concentrazione totale di ossidi di azoto (NO_x) viene eseguita facendo convertire tutti gli ossidi di azoto a NO per via catalitica (generalmente viene usato molibdeno come catalizzatore, a temperature di circa 400 $^{\circ}$ C) e procedendo poi con la reazione chemiluminescente con ozono.

La semplicità della strumentazione richiesta nelle misure di chemiluminescenza e l'elevata sensibilità hanno reso possibile la realizzazione di biosensori con elevate prestazioni per la determinazioni di numerosi analiti (vedi Capitolo 14).

10A.5 Spettroscopie vibrazionali: assorbimento nell'infrarosso e spettroscopia Raman

La regione infrarossa dello spettro elettromagnetico ha energie che corrispondono a quelle delle transizioni fra livelli energetici vibrazionali/rotazionali delle molecole. Questa regione si estende fra 0.8 e 1000 μ m (vale a dire tra 10 e 12500 cm⁻¹ in numeri d'onda (*ricordiamo che il numero d'onda è l'inverso della lunghezza d'onda*), ed è suddivisa in tre sotto-regioni (**Figura 10A.59**), che sono utilizzate in tecnologie diverse fra loro dal punto di vista teorico e applicativo, e richiedono strumentazioni apposite.

Figura 10A.59 Regione infrarossa dello spettro elettromagnetico.

La regione di gran lunga più importante dal punto di vista analitico è il *medio IR* (*mid infrared*, MIR), che si estende approssimativamente tra 2.5 e 25 µm (corrispondenti a 4000-400 cm⁻¹): questa regione costituisce l'intervallo dove cade la maggior parte delle bande di assorbimento fondamentali e viene utilizzata per l'analisi qualitativa e quantitativa fin dagli anni '50 del secolo scorso. La spettroscopia nel *vicino infrarosso* (*near infrared*, NIR) identifica il range di lunghezze d'onda da circa 0.8 a circa 2.5 µm (pari a 12500-4000 cm⁻¹): questa tecnica ha guadagnato popolarità dalla metà degli anni '80 e attualmente costituisce un ramo importante della spettroscopia IR, che copre un'ampia gamma di metodi di analisi qualitativi e quantitativi. Ad esempio, riveste un ruolo importante in settori industriali, dove viene utilizzata come metodo rapido per l'identificazione, la classificazione e il controllo di qualità di prodotti, nonché per la determinazione delle proprietà chimiche e fisiche di prodotti e delle concentrazioni di componenti nelle applicazioni di processo. Tuttavia, l'utilizzo della tecnica NIR è importante anche per la ricerca scientifica di base, come sarà mostrato più avanti fra le applicazioni. Il *lontano infrarosso* (*far infrared*, FIR), infine, si estende fra 25 µm e 1 mm (400-10 cm⁻¹). È stato di interesse principalmente accademico in passato; in tempi più recenti, la messa a punto di nuova strumentazione ha reso molto più facile l'accesso alla regione FIR e a quella ad essa adiacente, delle microonde, che vengono identificate complessivamente col termine *spettroscopia terahertz*, la quale ha subito un notevole sviluppo di applicazioni che ne fanno uso.

Fra le spettroscopie vibrazionali si annovera, inoltre, la spettroscopia Raman, la quale si distingue dalla spettroscopia IR sia per l'origine dei fenomeni che studia sia per la strumentazione con cui essi vengono osservati. Tuttavia, le due tecniche sono accomunate dal fatto che entrambe forniscono uno spettro prodotto da transizioni vibrazionali. Nei paragrafi successivi, accessibili tramite il codice QR10A.1 sottostante, saranno presentati i principi di base di entrambe, assieme agli aspetti strumentali e ad alcuni esempi applicativi.

QR10A.1 Paragrafi 10A.5.1-10A.5.8

Assorbimento nell'infrarosso e spettroscopia Raman: principi base, aspetti strumentali ed esempi applicativi

QR10A.2 Bibliografia selezionata

Luigia Sabbatini • Cosimino Malitesta • Paolo Pastore

Chimica Analitica

All'interno del volume il **codice personale** e le istruzioni per accedere alla versione **ebook** del testo e agli ulteriori servizi. L'accesso alle risorse digitali è **gratuito** ma limitato a **18 mesi dalla attivazione del servizio**.

