Gianfranco Trapani

LA NUTRACEUTICA NELLA PRATICA CLINICA

Integrazione e prevenzione

Sommario

Autore		XVII
Presentazior	ne	XIX
Nutraceutici	i work in progress: istruzioni per l'uso del libro	XXIII
Capitolo 1	Definizioni generali dei nutraceutici, una nota sul farmaco vegetale di Christian Cravotto 1. La nutraceutica 2. Il mercato dei prodotti nutraceutici. 3. Che cosa comprendono i prodotti nutraceutici? 3.1. Alimenti funzionali. 3.2. Integratori alimentari 3.3. Vitamine. 3.4. Probiotici, prebiotici e postbiotici. 4. Novel Food. 5. Nuove tecnologie per la produzione di prodotti nutraceutici. 6. Note sui prodotti fitoterapici e il "farmaco vegetale".	1 1 2 4 4 4 4 5 6
	cazione dei nutraceutici e loro proprietà	
Capitolo 2 Botanicals (di derivazione vegetale) di Gianfranco Trapani		11 11 13

Aloe vera (Burm. f.), Aloe (polisaccaridi, antrachinoni)	18
Ananas comosus (L.) Merr., Ananas (bromelina)	21
Andrographis paniculata Burm. f., Wall. ex Nees (andrographolide)	25
Angelica archangelica (L.), Angelica (furanocumarine,	
cumarine e lattonisesquiterpenici, α -pinene, limonene)	27
Angelica sinensis (Oliv.) Diels, Dong quai	_,
(Z-ligustilide, acido ferulico)	31
Aphanizomenon flos-aquae (L.), Ralfs ex Bornet & Flahault,	01
Klamath Alga (afa ficocianine, vitamine, minerali,	
ficocianine e ficocianobiline)	33
Astragalus membranaceus (Fisch.) Bunge (polisaccaridi,	33
saponine astragaloside IV, flavonoidi)	36
•	38
Avena sativa (L.), Avena (avenantramidi, β-glucani)	30
Bacopa monnieri (L.), Wettst. (Brahmmi), Bacopa	11
(bacosidi A e B)	41
Berberis aristata DC. (berberina)	43
Boswellia serrata Roxb. (acidi boswelici)	47
Camellia sinensis (L.) (catechine, teina, L-teanina)	50
Cannabis sativa (L.), Olio di semi di canapa sativa (acido	- 4
α-linolenico, acido linoleico, fitosteroli e tocoferoli)	54
Capsicum annuum (L.), Peperoncino (capsaicina)	58
Carica papaya (L.), Papaya (papaina)	61
Cassia (L.) (glicosidi antrachinonici, sennosidi A e B)	64
Centella asiatica, Hydrocotyle asiatica (L.), Urb Centella	
(asiaticoside, acido asiatico, acido madecassico	
e madecassoside)	68
Cichorium intybus (L.), Cicoria (inulina)	71
Cimicifuga racemosa, Actea racemosa (L.)	
(acteina e cimicifugoside)	74
Cinnamomum Verum J. Presl, Cannella (acido cinnamico,	
cinnamato, eugenolo, cinnamaldeide)	76
Citrus aurantium (L.), Arancio amaro (p-sinefrina)	79
Citrus bergamia Risso & Poit., Bergamotto	
(naringina, bergaptene, limonene)	82
Citrus paradisi Macfad, Pompelmo (naringina,	
acido ascorbico, oli essenziali)	85
Coprinus comatus (O.F. Mül) (L.) (vanadio,	
trealosio, ergotioneina, flavoni)	88
Cordyceps sinensis (Berk.) (polisaccaridi,	
cordicepina, ergosterolo)	91
Cranberry, Vaccinium macrocarpon Aiton, Mirtillo rosso	
americano (proantocianidine A)	94

Crataegus monogyna Jacq, Biancospino (flavonoidi	
e procianidine oligomeriche)	97
Crocus sativus (L.), Zafferano (crocina, picrocrocina,	
safranale)	100
Cucurbita pepo (L.), Zucca (fitosteroli,	
acido oleico, composti fenolici)	102
Cuminum cyminum (L.), Cumino (cuminaldeide,	
p-cymene, γ-terpinene e β-fellandrene)	105
Curcuma longa (L.), Curcuma (curcumina)	107
Cyamopsis tetragonoloba (L.) Taub,	
Gomma di Guar (galattomannano)	110
Cynara cardunculus var. scolymus (L.), Carciofo	
(acido clorogenico, cinarina, luteolina)	113
Echinacea angustifolia DC., E. pallida (Nutt.) Nutt.,	
E. purpurea (L.), Moench (alchilamidi, echinacoside,	
polisaccaridi, acido cicorico)	115
Eleutherococcus senticosus (Rupr. & Maxim.)	
Maxim, Eleuterococco (eleuterosidi, polisaccaridi,	
saponine, fitosteroli, lignani)	120
Eschscholzia californica Cham., Escoltia (alcaloidi,	
eschscholtzina, californidina)	123
Foeniculum vulgare Mill. (L.), Finocchio	
(anetolo, fencone, estragolo)	126
Fucus vesicolosus (L.), Fucus (fucoidano, fucoxantina,	
laminarina, polifenoli)	128
Ganoderma lucidum (Curtis) P. Karst, Reishi	
(β-glucani, acidi ganoderici)	131
Garcinia cambogia (L.) N. Robson	
(acido idrossicitrico, benzofenoni)	134
Garcinia mangostana (L.), Mangostano	
(α-β-mangostina, garcinone E e gartarina)	136
Ginkgo biloba (L.), Ginkgo (quercetina, kaempferolo,	
isoramnetina, ginkgolide A, B, C, J, M, bilobalide)	139
Glycine max (L.) Merr., Soia (fitosteroli)	143
Griffonia simplicifolia (DC.), Griffonia	
(5-idrossitriptofano, griffonina, serotonina)	146
Grifola frondosa (Dicks.) Gray, Maitake (β-glucani,	
terpeni)	148
Gymnema silvestre (Retz.) R.Br. ex Schult., Gur mar	
(gimnemasaponine, flavonoidi, antrochinoni)	151
Hamamelis virginiana (L.), Amamelide (proantocianidine,	
acido gallico, hamamelitannina)	154

Harpagophytum procumbens, (Burch.) DC. ex Meisn.,
Artiglio del diavolo (glicosidi iridoidi, glicosidi fenolici,
terpenoidi)
Hericium erinaceus Bul (L.) Pers. (β-glucani, triterpeni,
erinacine, fenoli)
Hieracium pilosella (L.), Pillosella (flavonoidi, cumarine,
tannini)
Humulus lupulus (L.) (xantumolo, isoxantumolo,
prenilnaringenina, acidi amari)
Hypericum perforatum (L.), Iperico Erba di San Giovanni
(ipericina, pseudoipericina, iperforina, adiperforina)
Îlex paraguariensis A.St.Hi (L.), Yerba mate
(acidi caffeilchinici, xantine, matesaponine)
Inonotus obliquus (Ach. ex Pers.) Pilát, Chaga (betulina
e acido betulinico, inotidiolo, superossido dismutasi)
Lavandula angustifolia Mill. (L.), Lavanda (acetato
di linalile, linalolo, eucaliptolo, terpinen-4-olo)
Lentinula edodes (Berk.) Pegler, Shiitake
(lentinano, β-glucani, selenio)
Lepidium meyenii Walp., Maca, Ginseng peruviano
(macamidi, benzil glucosinolato, lepidiline e macapirroline)
Lycium barbarum (L.), Goji bacche (polisaccaridi,
β-carotene e zeaxantina)
Magnolia officinalis Rehder & E.H. Wilson, Magnolia
(magnololo, honokiolo)
Malus domestica Borkh. cv. Annurca, Mela annurca
(procianidina B2, floridzina, acido clorogenico)
Matricaria chamomilla (L.), Camomilla (apigenina,
luteolina, camazulene, α-bisabololo)
Melilotus officinalis (L.) Lam, Meliloto (7-idrossicumarina,
melilotoside, acido cinnamico)
Melissa officinalis (L.), Melissa (apigenina, acido rosmarinico)
Mentha piperita (L.), Menta (mentolo, eucaliptolo)
Morinda citrifolia (L.), Noni (acidi grassi, iridoidi,
antrachinoni, cumarine, flavonoidi, proxeronina
Moringa oleifera (L.) Moringa pterygosperma, Rafano
indiano (terpeni, acido oleico, acido beenico, terpeni,
glucosinolati, flavonoidi)
Nigella sativa (L.) (timochinone, nigellone,
nigellicimina, nigellidina, 4-terpineolo)
Olea europaea (L.), Olio extravergine di oliva
(tirosolo, idrossitirosolo, polifenoli)

Orthosiphon aristatus (Blume) Miq., Tè di Giava (acido	
rosmarinico, sinensetina, eupatorina)	
Oryza sativa (L.), Olio di crusca di riso (gamma-orizanolo,	
acido ferulico)	
Panax ginseng C.A.Mey., Ginseng cinese o coreano,	
Ginseng asiatico (ginsenosidi, ginsengani, ginseng	
polipeptide, glicani)	
Panax quinquefolius (L.) Ginseng americano (ginsenosidi,	
pseudoginsenosidi, quinquenosidi, malonil ginsenosidi)	
Passiflora incarnata (L.), Passiflora (vitexina,	
passiflorina, isovitexina)	
Phaseolus vulgaris (L.), Fagiolo (inibitori dell' α -amilasi,	
lectine, polifenoli, sponine)	
Plantago ovata Forssk. (L.), Psillio (arabinoxilano, xilosio)	
Pleurotus eryngii (DC.) Quél., Fungo cardoncello	
(β-glucani, polipeptidi)	
Pleurotus ostreatus (Jacq.) P. Kumm., Führer Pilzk.	
(Zwickau), Fungo ostrica (β-glucani, lovastatina)	
Polyporus umbellatus (Pers.: Fr.), Grifola umbellata o Grifolia	
a ombrello (poliporusterone A e B, ergone)	
Prunus avium (L.), Ciliegia (antociani, flavonoidi,	
tannini)	
Punica granatum (L.), Melograno (acido gallico,	
acido ellagico, proantocianidine, β-sitosterolo)	
Pygeum africanum Hook f., sin. Prunus Africana Kalk., Pruno	
africano (β-sitosterolo, acido oleanolico, docosanolo)	
Rhodiola rosea (L.), Rodiola (rosavina, salidroside)	
Ruscus aculeatus (L.), Pungitopo (ruscogenine)	
Schisandra chinensis (Turcz.) Bail (L.) (schisandrina	
A e B, schisantherina A e B, schisanenolo,	
deossischisandrina, gomisina A)	
Serenoa repens (W. Bartram) Small, Saw Palmetto o palma	
nana (β-sitosterolo, acido laurico, acido miristico, oleico,	
palmitico, stearico)palmitico, acido ministico, ofeico,	
Sylibum marianum (L.) Gaertn., Cardo mariano	
(silibinina, silibinina A e B, silicristina, silidianina)	
Spirulina major Kützing ex Gomont, Arthrospira maxima	
Setchell & Gardner, Arthrospira platensis Kützing ex Gomont,	
Alga spirulina (proteine, ficocianina, carotenoidi)	
Theobroma cacao (L.), Cacao (teobromina, caffeina, teofillina)	
Trametes versicolor (L.) Fr. Pilàt, Coda di tacchino (β-glucani,	
polisaccaride Krestini, polisaccaride peptide)	

	Trigonella foenum-graecum (L.) (4-idrossiisoleucina,	
	trigonellina, fibra solubile e insolubile)	268
	Urtica dioica (L.), Ortica (kaempferolo, quercetina,	
	acido caffeico, β-sitosterolo, benzilisochinolina)	271
	Uva ursina, Arctostaphylos uva-ursi (L.) Spreng. (arbutina,	
	acido gallico, acido ellagico, tannini idrolizzabili)	274
	Vaccinum myrtillus (L.), Mirtillo (quercetina,	
	acido clorogenico, miricetina)	276
	Valeriana officinalis (L.), Valeriana (valeranale, valeranone,	
	valerianina, acido valerenico)	279
	Vitis vinifera (L.), Vite (resveratrolo,	
	antocianine, proantocianidine)	281
	Withania somnifera (L.), Dunal (withanina,	
	somniferina, glicowitanolidi)	283
	Zingiber officinale Roscoe, Zenzero	
	(gingeroli, shogaoli, zingerone)	286
Capitolo 3	Gli acidi	
	di Christian Cravotto	289
	Acido butirrico	289
	Acido ialuronico	292
	Acido lipoico	295
	Acido para-amminobenzoico (vitamina B10)	298
Capitolo 4	Oligoelementi e macrominerali	
1	di Gianfranco Trapani e Alessandro Goso	301
	Boro	302
	Calcio	305
	Carbonati	307
	Cromo	308
	Ferro	310
	Fosforo	313
	Iodio	317
	Magnesio	319
	Manganese	323
	Molibdeno	325
	Potassio	327
	Rame	329
	Selenio	331
	Silicio	334
	Zinco	336

Capitolo 5	Le vitamine					
-	di Gianfranco Trapani					
	1. Le vitamine in nutraceutica	341				
	Vitamina A (retinolo)	342				
	Vitamina B1 (tiamina)	347				
	Vitamina B2 (riboflavina)	349				
	Vitamina B3 (niacina)	352				
	Vitamina B5 (acido pantotenico)	355				
	Vitamina B6 (piridossina cloridrato,					
	piridossale-5'-fosfato)	357				
	Vitamina B8 (biotina)	360				
	Vitamina B9 (folato)	362				
	Vitamina B12 (cianocobalamina)	365				
	Vitamina C (acido L-ascorbico)	369				
	Vitamina D (ergocalciferolo, colecalciferolo)	372				
	Vitamina E (α-tocoferolo)	375				
	Vitamina K (fillochinone, menachinone, menadione)	378				
Capitolo 6	Componenti nutrizionali bioattivi					
-	di Camilla Bertoni e Gianfranco Trapani	383				
	Acetilcarnitina (L-acetilcarnitina)	383				
	Acetilcisteina (N-acetilcisteina)	386				
	Acetilglucosamina (N-acetilglucosamina)	388				
	Acido alfa-linolenico (ALA)	390				
	Alginati (sali di magnesio, sodio, potassio, calcio) 3					
	Amminoacidi essenziali (fenilalanina, isoleucina, istidina,					
	leucina, lisina, metionina, treonina, triptofano e valina)	395				
	Amminoacidi ramificati (leucina, isoleucina, valina)	398				
	Arabinogalattano (polisaccaridi)	400				
	Arginina (L-arginina)	402				
	Astaxantina	405				
	β-galattosidasi	408				
	β-cariofillene	410				
	β-glucani (polisaccaridi)	411				
	Caffeina	414				
	Chitosano	418				
	Coenzima Q10 (ubichinolo e ubichinone)	419				
	Collagene (collagene idrolizzato)	422				
	Colostro bovino.	426				
	Diosmina	429				
	Fitosteroli (stigmasterolo, campesterolo, sitosterolo)	431				
	Fosfatidilcolina	433				

	Fosfatidilserina (cefalina)					
	Glicosidi antrachinonici (reoside, sennosidi, frangulina,					
	cascarosidi, aloina, aloe emodina)					
	Glucomannano					
	Glucosamina					
	Glutatione					
	Inositolo (vitamina B7)					
	L-teanina					
	Latte d'asina					
	Lattoferrina (lattotransferrina)					
	Luteina					
	Mannosio (D-mannosio)					
	Melatonina (N-acetil-5-metossitriptammina)					
	Nucleotidi					
	Omega-3 (acido eicosapentaenoico – EPA					
	e acido docosaesaenoico – DHA)					
	Ossido nitrico (monossido di azoto)					
	Palmitoiletanolamide (N-esadecanoiletanolamide)					
	Resveratrolo					
	Sorbitolo					
	Squalene					
	Taurina (acido 2-amminoetansolfonico)					
	Triptofano					
	Urolitina A.					
	Zeaxantina					
Capitolo 7	Probiotici, prebiotici e postbiotici: implicazioni					
	per la salute e il benessere					
	di Etta Finocchiaro					
	1. Probiotici					
	1.1. Definizione e meccanismi d'azione					
	1.2. Sicurezza dei probiotici					
	1.3. Funzione dei probiotici					
	1.4. Applicazioni cliniche e studi clinici					
	1.5. Probiotici e salute intestinale					
	1.6. Probiotici e uso di inibitori di pompa protonica					
	1.7. Usi e dosaggi					
	2. Prebiotici					
	2.1. Definizione e meccanismi d'azione					
	2.2. Applicazioni cliniche e studi clinici					
	2.3. Fonte naturale di prebiotici					
	2.4. Usi e dosaggi					

	3.		D10t1c1	500
		3.1.	Definizione e meccanismi d'azione	500
		3.2.	Razionale di impiego	501
		3.3.	Applicazioni cliniche e studi clinici	501
		3.4.	Usi e dosaggi	502
Uso rag i di Gianfra			dei nutraceutici nella pratica clinica	l
Capitolo 8	St	adi de	ella vita e benessere generale	505
_	1.	Nutr	aceutici in epoca perinatale e allattamento	505
		1.1.	Nutraceutici per allattamento	508
		1.2.	Probiotici, prebiotici e fibre consigliati	
			durante la gravidanza e l'allattamento	508
	2.	Nutr	aceutici per la salute femminile	510
		2.1.	Cambiamenti di umore	510
		2.2.	Cellulite	510
		2.3.	Disturbi del ciclo mestruale	511
		2.4.	Menopausa	512
		2.5.	Secchezza vaginale	513
		2.6.	Sindrome ovaio policistico	514
Capitolo 9	Si	stemi	e apparati del corpo umano	515
	1.	App	arato digerente	515
		1.1.	Prebiotici per il benessere dell'apparato digerente	515
		1.2.	Diarrea	515
		1.3.	Dispepsia funzionale	516
		1.4.	Malattie Infiammatorie Croniche Intestinali (MICI)	
			o Inflammatory Bowel Disease (IBD)	517
		1.5.	Nausea e vomito	517
		1.6.	Sindrome dell'intestino irritabile (SII)	
			o Irritable Bowel Syndrome (IBS)	519
		1.7.	Steatosi epatica non alcolica (NAFDL)	520
		1.8.	Stipsi	520
		1.9.	Ossiuri	521
	2.	Siste	ma respiratorio	522
		2.1.	Nutraceutici per tosse e bronchite post-infettiva	523
		2.2.	Nutraceutici per sindrome influenzale	524
		2.3.	Nutraceutici per raffreddore, mal di gola,	
			faringite e otite	524
	3.		arato cardiovascolare	525
		3.1.	Angina pectoris	525

	3.2.	Ipertensione	526
	3.3.	Âterosclerosi	527
	3.4.	Dislipidemie	528
	3.5.	Ipotensione	529
	3.6.	Tachicardia e aritmie	530
	3.7.	Salute cardiaca	532
4.	Siste	ma venoso	533
	4.1.	Insufficienza venosa e complicanze	533
	4.2.	Emorroidi	533
	4.3.	Fragilità capillare (epistassi)	534
5.	Siste	ma ematopoietico	535
	5.1.	L'anemia nei bambini	536
	5.2.	L'anemia negli adulti	536
6.	Appa	arato urogenitale	537
	6.1.	Infezioni del tratto urinario (UTI)	537
	6.2.	Iperplasia prostatica benigna (BPH)	537
	6.3.	Prostatite	539
	6.4.	Salute vaginale	540
	6.5.	Spasmi muscolari e disfunzioni del tratto urinario	541
	6.6.	Supporto immunitario del sistema urogenitale	541
7.	Siste	ma nervoso	543
	7.1.	Stress, ansia e depressione	543
	7.2.	Disturbi del sonno	544
	7.3.	Emicrania e cefalea	545
	7.4.	Deficit attenzione ADHD	546
	7.5.	Autismo	547
	7.6.	Convalescenza e astenia	548
	7.7.	Dolore acuto e cronico	549
	7.8.	Neuropatia periferica	550
	7.9.	Sclerosi multipla (SM)	551
	7.10.	Epilessia	552
	7.11.	Declino cognitivo e morbo di Alzheimer	553
		Morbo di Parkinson	553
8.		arato cutaneo	554
	8.1.	Acne	554
	8.2.	Eczemi e dermatite atopica	555
	8.3.	Psoriasi	557
	8.4.	Alopecia	557
	8.5.	Rosacea	558
	8.6.	Ustioni e cicatrici	559
	8.7.	Orticaria	560
	8.8.	Invecchiamento cutaneo.	560
	8.0	Charatasi attinica	561

		8.10.	Dermatite seborroica	561
		8.11.	Pitiriasi versicolor	562
	9.	Appa	arato osteoarticolare	562
		9.1.	Osteoartrosi	562
		9.2.	Artrosi cervicale	563
		9.3.	Artrite	564
		9.4.	Fibromialgia	565
		9.5.	Osteoporosi	566
		9.6.	Gotta	567
		9.7.	Tendiniti, borsiti e dolori muscolari	567
	10	. Salut	te della vista	568
		10.1.	Problemi della vista nei bambini	568
		10.2.	Problemi della vista negli adulti	569
Capitolo 10	Pa	tologi	e e condizioni specifiche	571
•	1.	_	ttie metaboliche	571
		1.1.	Sovrappeso e obesità	571
		1.2.	Sindrome metabolica	573
		1.3.	Ipercolesterolemia	575
		1.4.	Ipertrigliceridemia	576
		1.5.	Diabete di tipo 2	576
		1.6.	Danno epatico da sindrome metabolica	577
		1.7.	NAFLD (steatosi epatica non alcolica)	577
		1.8.	NASH (steatoepatite non alcolica)	577
		1.9.	MASLD (malattia epatica associata a disordini	
			metabolici)	578
	2.	Aller	gie	578
		2.1.	Raffreddore allergico, congiuntivite allergica,	
			asma allergica, bronchite allergica, otite, sinusite	
			e orticaria	578
		2.2.	Allergie e intolleranze alimentari	580
	3.	Odo	ntoiatria	582
		3.1.	Gengivite e malattia parodontale	582
		3.2.	Carie dentale	583
		3.3.	Alitosi	584
		3.4.	Infezioni orali (stomatiti, herpes)	584
		3.5.	Guarigione delle ferite orali (post-chirurgia, ulcere).	585
		3.6.	Salute ossea e dentale	585
		3.7.	Probiotici e salute orale	586
	4.	Attiv	rità sportiva	586
		4.1.	Attività sportiva e bambini	586
		4.2.	Attività sportiva e adulti	587

Botanicals (di derivazione vegetale)

di Gianfranco Trapani

Aesculus hippocastanum (L.), Ippocastano (escina)

DEFINIZIONE

Aesculus hippocastanum L., nome comune "ippocastano o castagno d'India", appartiene alla famiglia delle Sapindaceae (attribuzione modificata in seguito ad analisi del DNA, che ha sostituito la famiglia delle Hippocastanaceae), al genere Aesculus e alla specie Aesculus hippocastanum.

PARTE UTILIZZATA

Prevalentemente i semi, meno frequentemente foglie, corteccia e fiori, sia in preparazioni orali sia topiche. Tuttavia, con l'embriogenesi androgena, *Aesculus hippocastanum* e *Aesculus flava* possono essere utilizzati come fonte per la produzione su larga scala di escina.

PRINCIPI ATTIVI

Escina: complesso di saponine triterpeniche.

Flavonoidi: quercetina, kaempferolo e altri; hanno proprietà antiossidanti e contribuiscono alla protezione dei vasi sanguigni.

Cumarine: inclusa l'aesculina, con proprietà antinfiammatorie e in grado di ridurre la fragilità capillare.

MECCANISMO D'AZIONE

Attività antinfiammatoria: riduce i marcatori dell'infiammazione come TNF- α , IL-1 β - e la PGE2, pertanto può avere attività antiobesità, riduce i livelli di leptina e aumenta la concentrazione di colesterolo HDL in modelli animali alimentati con diete ad alto contenuto di grassi.

Modulazione degli enzimi microsomiali: inibisce o stimola gli enzimi del citocromo P450 (CYP2C9 e CYP3A4), influenzando il metabolismo di alcuni farmaci (es. anticoagulanti come il warfarin). Tuttavia, l'effetto può variare a seconda della dose e dell'individuo.

Endotelio vascolare: inibisce la proliferazione e la migrazione cellulare, induce apoptosi. In pratica escina e flavonoidi rallentano la crescita delle cellule endoteliali, riducono la proliferazione eccessiva che può portare a fenomeni come l'angiogenesi anomala e regolano il rinnovamento cellulare prevedendo una eccessiva crescita vascolare.

Danno ossidativo: effetti protettivi contro la neuropatia diabetica e la nefropatia, prevenendo lo stress ossidativo causato dai radicali liberi.

INDICAZIONI CLINICHE

Circolazione e insufficienza venosa cronica: migliora la circolazione venosa e tratta l'insufficienza venosa cronica. Riduce i sintomi delle emorroidi e allevia i sintomi legati alle vene varicose (dolore, pesantezza, prurito e gonfiore).

Parodontite: inibisce la gelatinasi e la collagenasi, utile nel trattamento della parodontite.

Invecchiamento cutaneo: inibisce le attività enzimatiche coinvolte nel danno tessutale (ialuronidasi, collagenasi, elastasi e β -glucuronidasi), che degradano i componenti della matrice extracellulare (invecchiamento cutaneo, perdita di elasticità della pelle). Attività antiedemigena: efficace nel trattamento di edemi post-traumatici e post-operatori.

INTERAZIONI FARMACOLOGICHE

Interagisce con anticoagulanti (come il warfarin) e farmaci antiaggreganti piastrinici, aumentando il rischio di emorragie (attenzione agli interventi chirurgici). Potrebbe anche interagire con farmaci antinfiammatori non steroidei (FANS), alterandone l'efficacia o aumentandone gli effetti collaterali.

EFFETTI AVVERSI

Rari disturbi gastrointestinali (nausea, dispepsia, vomito e diarrea), cefalea e reazioni cutanee allergiche.

CONTROINDICAZIONI

Allergia all'ippocastano o ai suoi componenti. Insufficienza renale o epatica. Gravidanza e allattamento, ammesso sotto controllo medico.

POSOLOGIA

200 mg di estratto (5:1) standardizzato al 15-20% di escina (a partire da estratto idroalcolico 1:2 35% etanolo), pari a 40 mg escina pro dose: 2-3 giorno.

BIBLIOGRAFIA

Idris S *et al.* Phytochemical, ethnomedicinal and pharmacological applications of escin from *Aesculus hippocastanum* L. towards future medicine. *J Basic Clin Physiol Pharmacol.* 2020 Jul 10; 31(5): /j/jbcpp.2020.31.issue-5/jbcpp-2019-0115/jbcpp-2019-0115.xml.

Štajner D, Popović BM *et al.* Comparative study of antioxidant status in androgenic embryos of Aesculus hippocastanum and Aesculus flava. *ScientificWorldJournal*. 2014 Feb 3; 2014: 767392.

Agaricus blazei Murril (A. subrufescens) (β-glucani)

DEFINIZIONE

Agaricus blazei Murrill (A. subrufescens) (AbM) è un fungo medicinale, tipico della zona del Brasile. Sebbene la sua popolarità in campo medico sia recente, poiché è molto difficile da trovare e coltivare. Nella tassonomia biologica dei funghi: regno Funghi, phylum Basidiomycota, classe Agaricomycetes, ordine Agaricales, famiglia Agaricaceae, genere Agaricus, specie Agaricus blazei Murrill (AbM).

PARTE UTILIZZATA

Vengono utilizzati il corpo fruttifero e il micelio del fungo. Il corpo fruttifero è costituito da cappello, gambo e lamelle. Il micelio è la parte vegetativa del fungo ed è composto da ife.

PRINCIPI ATTIVI

I principi attivi si trovano nel corpo fruttifero e nel micelio del fungo.

Polisaccaridi: monosaccaridi uniti da legami glicosidici, come i β -glucani catene di D-glucosio collegate tramite legami β -glicosidici, con azione sul sistema immunitario.

Steroli: tra cui l'*ergosterolo*, un precursore della vitamina D2.

Lipidi: di alto valore nutrizionale.

Enzimi: come tirosinasi, superossido dismutasi (SOD) e catalasi.

Sono presenti **nucleotidi**, **minerali** come zinco, magnesio e potassio, oltre a **vitamine del gruppo B**.

MECCANISMO D'AZIONE

I β-glucani sono chiamati *Modificatori di Risposta Biologica*, ovvero sostanze che aiutano il sistema immunitario a rispondere meglio a malattie o infezioni, modulando la risposta biologica del corpo per migliorare la salute. Assorbiti nell'ileo tramite pinocitosi dalle cellule M, attivano macrofagi e cellule dendritiche attraverso recettori di superficie come *"Complement Receptor 3"* o CR3 (riconosce componenti del sistema del complemento, facilita la fagocitosi), *"Dendritic Cell-Associated C-Type Lectin-1"* o Dectin-1 (riconosce componenti della parete cellulare, facilita la fagocitosi) e *"Toll-Like Receptor 2"* o TLR-2 (riconosce componenti della parete cellulare dei batteri Gram-positivi, peptidoglicani e lipoproteine, stimola la risposta immunitaria innata). L'attivazione di Dectin-1 e TLR-2 migliora l'efficacia fagocitica dei macrofagi e attiva neutrofili e cellule NK. Questo stimola la cascata di segnali intracellulari legata alla modulazione genica e alla proliferazione delle cellule immunitarie.

Gli acidi

di Christian Cravotto

Acido butirrico

PROVENIENZA

L'acido butirrico (BA) appartiene alla classe degli acidi grassi a catena corta, più noti come acronimo SCFA (Short-Chain Fatty Acids), ovvero acidi organici contenenti da 2 a 4 atomi di carbonio: acido acetico (C2), acido propionico (C3) e acido butirrico (C4). A temperatura ambiente, è un liquido incolore con un odore pungente di olio rancido. Il BA è naturalmente presente nel tratto gastrointestinale come prodotto del metabolismo batterico della fibra alimentare. È prodotto principalmente da batteri anaerobi, come Eubacterium rectale, Roseburia hominis, Faecalibacterium prausnitzii, Coprococcus eutactus e alcune specie di clostridium, come Clostridium butyricum.

Inizialmente, la fibra viene idrolizzata in monomeri come *glucosio*, *lattosio*, *xilosio* e *arabinosio*, che vengono poi convertiti tramite la glicolisi in piruvato e infine in SCFA e gas. L'*acido acetico* rappresenta circa il 60% degli SCFA prodotti nel colon, l'*acido propionico* il 25% e il BA il 15%. Tuttavia, le variazioni interindividuali nella composizione della flora batterica possono influenzare notevolmente questo processo di fermentazione.

Gli SCFA vengono rapidamente assorbiti nel lume del colon a una velocità proporzionale alla lunghezza della loro catena carbossilica. In generale, questi composti costituiscono la principale fonte di energia per le cellule epiteliali del colon, e in particolare il BA è quasi completamente metabolizzato (70-90%) in questo sito.

MECCANISMO D'AZIONE

Il BA in formulazioni orali standard viene rapidamente assorbito nello stomaco e nell'intestino tenue. Per raggiungere il colon in quantità adeguate, sono quindi consigliate formulazioni gastroresistenti, microincapsulati e/o formulazioni a rilascio pH dipendente di BA o suoi sali. La somministrazione del batterio *Clostridium butyricum* che produce acido butirrico aggira il problema della gastrosensibilità dell'acido butirrico.

Oligoelementi e macrominerali

di Gianfranco Trapani e Alessandro Goso

Gli oligoelementi sono minerali essenziali presenti in tracce nell'organismo. A differenza dei macrominerali (come calcio, fosforo e sodio), gli oligoelementi sono richiesti in quantità molto ridotte (generalmente inferiori a 100 mg al giorno), ma svolgono funzioni biologiche cruciali.

Gli oligoelementi non compensano direttamente le carenze di macronutrienti, ma sono fondamentali per il corretto funzionamento di numerosi processi metabolici e biochimici. I minerali essenziali sono classificati in due categorie principali. Vengono suddivisi in:

- macrominerali o macroelementi → richiesti in quantità superiori a 100 mg/die;
- oligoelementi o elementi traccia → richiesti in quantità inferiori a 100 mg/die.

I macroelementi (come calcio, magnesio, potassio, sodio, fosforo) sono coinvolti nel bilancio idrico, nella regolazione della pressione sanguigna, nella funzione muscolare e nella formazione di ossa e denti.

Gli oligoelementi (come ferro, zinco, rame, selenio, cromo, iodio) sono necessari in tracce ma fondamentali per il funzionamento enzimatico, il metabolismo e la regolazione del sistema immunitario.

Ecco alcuni esempi di funzioni biologiche. *Rame, zinco, selenio e ferro*: cofattori di enzimi che catalizzano importanti reazioni metaboliche. *Manganese e molibdeno*: cofattori enzimatici per la produzione di energia e il metabolismo degli amminoacidi. *Cromo*: coinvolto nel metabolismo del glucosio e nella regolazione dell'insulina. *Iodio*: essenziale per la sintesi degli ormoni tiroidei.

Negli adulti, gli oligoelementi possono sostenere il metabolismo e la funzione enzimatica, specialmente durante l'invecchiamento. Nei bambini, invece, sono essenziali per lo sviluppo del sistema immunitario e la crescita.

L'utilizzo degli oligoelementi dovrà in futuro applicare una maggiore personalizzazione attraverso l'uso combinato con test genetici e metabolici che consentiranno di identificare le necessità individuali in modo più preciso, favorendo un approccio integrato con altre pratiche nutraceutiche. Questo incentiverà la medicina preventiva e funzionale sia dei bambini sia degli adulti per favorire la salute e il benessere.

Il nostro elenco comprende:

- i macroelementi (macrominerali), in quantità richiesta >100 mg/die. Sono calcio, fosforo, magnesio, potassio. Sono macrominerali, ma non inclusi nella lista che non può essere esaustiva, il sodio e il cloro;
- gli oligoelementi (elementi traccia), in quantità richiesta <100 mg/die. Sono ferro, zinco, rame, selenio, cromo, manganese, molibdeno, iodio, boro (essenziale per alcune piante e studiato per il metabolismo osseo nell'uomo), silicio (che svolge un ruolo nel tessuto connettivo).

Boro

PROVENIENZA

Il boro è un elemento chimico classificato come metalloide, non possiede le caratteristiche tipiche dei metalli, come lucentezza, elevata conducibilità elettrica e termica, e malleabilità. In natura, si trova legato all'ossigeno, formando composti come *acido borico* e *borati*. È presente in molti alimenti e bevande derivati dalle piante, inclusi frutta, verdure a foglia verde e noci. Le fonti alimentari particolarmente ricche di *boro* includono avocado, frutta secca come uvetta e arachidi, succo di prugna, succo d'uva, datteri, mandorle, cavolfiori, funghi, legumi e polvere di cioccolato. Il *sodio borato* (*borace*) è un sale costituito da cristalli bianchi, derivato dall'*acido borico* e dal sodio.

MECCANISMO D'AZIONE

Effetti antibatterici: studi hanno dimostrato che, quando utilizzato come rivestimento su impianti ortopedici, come viti in titanio, il *sodio borato* è efficace nel ridurre la formazione di colonie batteriche e biofilm. I biofilm sono strati protettivi che i batteri formano sulle superfici, complicando il trattamento delle infezioni. Il rivestimento con sodio borato inibisce la formazione di questi biofilm e riduce la colonizzazione batterica, dimostrando un potenziale uso come agente antibatterico nei dispositivi medici. Modulazione dello stress ossidativo e della risposta infiammatoria: il boro agisce come un inibitore non competitivo della cADPR (ciclico ADP-ribosio), un messaggero intracellulare che mobilita il *calcio* dai depositi intracellulari. La diminuzione del cADPR porta a una riduzione del Ca²⁺ nel reticolo endoplasmatico, attivando fattori di trascrizione come ATF4 e Nrf2. Alcuni studi suggeriscono un'interazione con il metabolismo del calcio, ma il meccanismo esatto non è ancora del tutto chiarito. *Activating Transcription Factor 4 (ATF4) è un fattore di trascrizione attivato in condizioni di stress cellulare e regola l'espressione di geni che controllano il metabolismo cellulare, la sopravvivenza cellulare e la risposta al danno ossidativo. Svolge un ruolo*

Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) è un fattore di trascrizione che regola l'espressione di geni coinvolti nella protezione contro lo stress ossidativo e l'in-

importante nell'osteogenesi e nella risposta ai danni ossidativi e infiammatori.

Le vitamine

di Gianfranco Trapani

1. LE VITAMINE IN NUTRACEUTICA

Le vitamine sono sostanze organiche essenziali per la salute che l'uomo non è in grado di produrre autonomamente, anche se alcune vitamine possono essere sintetizzate in parte dall'organismo. Per esempio, la vitamina D può essere prodotta a livello cutaneo attraverso l'esposizione ai raggi UVB, e la vitamina K può essere sintetizzata in parte dal microbiota intestinale. Tuttavia, la sintesi endogena può non essere sufficiente, rendendo necessaria l'assunzione attraverso la dieta. Quindi tutte devono essere assunte attraverso la dieta o tramite integratori. Le vitamine partecipano a numerosi processi biologici, come il metabolismo energetico e la funzionalità immunitaria. Un loro adeguato apporto, sia tramite alimenti sia integratori nutraceutici, riduce il rischio di malattia e migliora la qualità della vita.

L'integrazione vitaminica è fondamentale quando la dieta non è sufficiente o in situazioni di aumentato fabbisogno, come in gravidanza o in presenza di malattie, oppure in condizioni di stress, di attività fisica intensa o determinate condizioni ambientali, poiché le vitamine interagiscono sinergicamente con altri nutrienti, massimizzando così i benefici per la salute. Sebbene un apporto adeguato di vitamine sia essenziale per la salute, non esistono prove conclusive che dimostrino che l'assunzione di vitamine tramite integratori in individui sani riduca il rischio di malattie al di là di specifiche carenze. L'integrazione è utile solo in caso di comprovata necessità.

La storia delle vitamine ha avuto inizio nel 1911 con la scoperta della *tiamina* da parte del medico polacco Kazimierz Funk, che coniò il termine "vitamina". Le vitamine si dividono in idrosolubili (per esempio, le *vitamine del gruppo B* e la *vitamina C*, che devono essere assunte quotidianamente, anche se la vitamina B12, per esempio, può essere accumulata nel fegato e utilizzata per diversi anni senza necessità di integrazione continua) e liposolubili (per esempio, le *vitamine A*, *D*, *E*, *K*, accumulate nel fegato e nel tessuto adiposo).

Nella nutraceutica, la supplementazione vitaminica deve essere personalizzata. Ogni individuo ha esigenze nutrizionali uniche, influenzate da fattori genetici, stile di vita, età, sesso e stato di salute. La nutraceutica mira a fornire un approccio

su misura, identificando le carenze specifiche e personalizzando il regime di integrazione per ottimizzare la salute individuale. Le vitamine, infatti, sono componenti cruciali per mantenere l'equilibrio fisiologico e prevenire le malattie, e il loro utilizzo offre promettenti prospettive per il miglioramento della salute umana.

Vitamina A (retinolo)

PROVENIENZA

La vitamina A si trova negli alimenti di origine animale, dove è presente come *retinolo*, pronta per essere utilizzata dall'organismo, e negli alimenti di origine vegetale come carotenoidi, precursori della vitamina A. Le fonti di origine animale del retinolo sono il fegato, il pesce grasso, i latticini e le uova. Le fonti di origine vegetale dei carotenoidi, come il beta-carotene, sono le carote, la zucca, le patate dolci, gli spinaci, i cavoli e la frutta colorata. Questi carotenoidi vengono convertiti in vitamina A secondo le necessità. Non tutti i carotenoidi presenti nei vegetali hanno attività provitaminica A. Solo alcuni carotenoidi, come il beta-carotene, l'alfa-carotene e la beta-criptoxantina, possono essere convertiti in vitamina A nell'organismo. Altri carotenoidi, come la luteina e la zeaxantina, non hanno questa funzione. Il retinolo appartiene al gruppo delle *vitamine liposolubili*. Queste vitamine possono essere immagazzinate nel fegato, rendendo non indispensabile un'assunzione regolare tramite l'alimentazione. L'organismo le conserva e le rilascia gradualmente quando ne ha bisogno.

MECCANISMO D'AZIONE

Dal retinolo (vitamina A) derivano sia il *retinale* sia l'acido retinoico. Il retinale deriva dall'ossidazione del retinolo. Il retinale può subire un'ulteriore ossidazione, trasformandosi in acido retinoico.

Quando la vitamina A viene convertita in acido retinoico, che oltre al retinale, importante nella visione, è una delle forme biologicamente attive, può entrare nel nucleo di cellule specifiche come quelle epiteliali, occhio, cute, respiratorio, digerente, sistema immunitario e nervoso, e influenzare l'espressione genica interagendo con i recettori nucleari, tra cui i recettori dell'acido retinoico (RAR) e i recettori X retinoidi (RXR). Questi recettori si legano a specifici elementi di risposta retinoica nel DNA e modulano la trascrizione di determinati geni, regolando (attivando o reprimendo) il processo di sintesi dell'RNA messaggero (mRNA) a partire dal DNA. I geni regolati sono coinvolti in processi fondamentali come la differenziazione cellulare (per esempio, nelle cellule della pelle e del sangue), la proliferazione (divisione cellulare nelle cellule epiteliali e del sistema immunitario) e l'apoptosi (in tessuti specifici per il rinnovamento e il mantenimento dell'omeostasi).

La vitamina A è essenziale per mantenere l'integrità e la funzionalità delle barriere epiteliali, inclusa la pelle e le mucose. Promuove l'immunità innata attra-

Componenti nutrizionali bioattivi

di Camilla Bertoni e Gianfranco Trapani

Acetilcarnitina (L-acetilcarnitina)

PROVENIENZA

La L-acetilcarnitina (LAC) (derivato amminoacidico) è un composto endogeno ampiamente distribuito in molti tessuti, incluso il cervello. È un derivato acetilato dell'amminoacido *L-carnitina*, la cui sintesi endogena parte dagli amminoacidi *L-lisina* e *L-metionina* (che producono L-carnitina), ed è catalizzata dall'enzima carnitina acetiltransferasi, situato principalmente sulla membrana mitocondriale interna, nonché nel reticolo endoplasmatico e nei perossisomi. La sintesi avviene attraverso una serie di reazioni enzimatiche che coinvolgono la metilazione e l'idrossilazione e che favoriscono la formazione di L-acetilcarnitina a partire da *L-carnitina* e acetil-CoA. LAC si trova principalmente nella carne, con una maggiore concentrazione nella carne rossa, ma anche in quella bianca, nel pesce e nel latte, non si trova nei cibi di origine vegetale se non in piccolissime quantità.

MECCANISMO D'AZIONE

La LAC viene assunta e assorbita grazie alla sua struttura anfifilica, che consente di attraversare rapidamente la barriera emato-encefalica, dove può essere trasportata dal trasportatore di cationi organici Organic Cation Transporter Novel type 2 (OCTN2), dipendente dal sodio presente nelle cellule che formano la barriera emato-encefalica. L'OCTN2 è un trasportatore sodio-dipendente e facilita l'ingresso della carnitina trasportandola attraverso la membrana cellulare. Oltre che nelle cellule della barriera emato-encefalica, OCTN2 è espresso in diversi tessuti, tra cui reni, fegato, cuore e muscoli scheletrici. La carnitina è fondamentale per il trasporto degli acidi grassi a catena lunga nei mitocondri per la β -ossidazione.

L'acetilcarnitina può modulare diverse attività nei tessuti nervosi, tra cui l'attività del fattore di crescita nervoso (NGF) e l'espressione dei recettori NGF nel sistema nervoso centrale, quindi LAC può influenzare la neuroplasticità e il metabolismo neuronale. Inoltre, influenza vari sistemi di neurotrasmissione, inclusi

i sistemi GABAergico, dopaminergico e colinergico, aumentando il contenuto di acetil-CoA e l'attività della colina acetiltransferasi. Recenti studi suggeriscono che LAC possa servire come donatore di gruppi acetilici, contribuendo all'acetilazione di proteine, tra cui le proteine istone e i fattori di trascrizione, attraverso meccanismi epigenetici.

INDICAZIONI CLINICHE

Disordini depressivi e distimici: LAC ha mostrato effetti antidepressivi rapidi e sostenuti attraverso meccanismi epigenetici. Questo avviene attraverso l'acetilazione degli istoni, che porta a una maggiore espressione genica, attraverso una modificazione epigenetica che altera la struttura della cromatina e regola l'accesso ai geni per la trascrizione. Aumenta i livelli di Brain-Derived Neurotrophic Factor (BDNF), che è una proteina cruciale per la sopravvivenza, la crescita e la differenziazione dei neuroni. BDNF gioca un ruolo fondamentale nella plasticità sinaptica, che è essenziale per l'apprendimento e la memoria; inoltre, ha effetti antidepressivi. Regola i recettori metabotropici (recettori trasmembrana) del Glutammato (mGlu2). Questi recettori non sono canali ionici e trasmettono i segnali all'interno della cellula attraverso una cascata di eventi biochimici, coinvolgendo proteine G (proteine legate alla guanosina trifosfato, GTP). Secondo studi in corso, LAC promuove la neuroprotezione attraverso l'aumento dell'espressione dei recettori mGlu2, coinvolti nella modulazione del rilascio di neurotrasmettitori.

Malattia di Alzheimer: studi clinici hanno mostrato benefici nella gestione della malattia di Alzheimer e del decadimento cognitivo lieve.

Malattia di Parkinson: in studi preliminari LAC ha dimostrato effetti positivi sui sintomi del Parkinson e sulla rigenerazione nervosa.

Infertilità maschile: l'acetil-L-carnitina migliora la motilità degli spermatozoi per raggiungere e fecondare l'ovulo, li protegge dai danni ossidativi (lo stress ossidativo è causa di danno spermatico e di infertilità maschile). Il trasporto degli acidi grassi nei mitocondri migliora l'energia disponibile per gli spermatozoi e contribuisce alla loro motilità e vitalità. L'integrazione con L-carnitina (migliora la motilità spermatica perché favorisce il trasporto di acidi grassi a catena lunga nei mitocondri, dove vengono ossidati per produrre energia) e acetil-L-carnitina per circa sei mesi, alla dose di 3 g al giorno, migliora con proporzioni variabili singolarmente la qualità dello sperma, il volume, la concentrazione, la motilità e la morfologia.

Neuropatia diabetica: ha migliorato il dolore e la rigenerazione nervosa nei pazienti con neuropatia diabetica.

Fibromialgia: studi clinici hanno mostrato benefici nel trattamento dei sintomi della fibromialgia.

Sindrome di Down: è stato utilizzato per migliorare le capacità cognitive nei pazienti con sindrome di Down, ma gli studi sono limitati e i risultati contrastanti. Ruolo nella sindrome dell'X fragile (FXS): l'acetilcarnitina (LAC) è stata studiata come trattamento per la sindrome dell'X fragile (FXS). Il trattamento con LAC

non ha migliorato significativamente il funzionamento intellettuale o il comportamento iperattivo nei bambini affetti da FXS rispetto al placebo. Tuttavia, le valutazioni dei genitori hanno mostrato alcuni miglioramenti nel comportamento sociale che favorivano LAC, anche se non erano considerati clinicamente rilevanti. Nessuno degli studi ha riportato effetti collaterali significativi.

Ruolo nello stress fisico: ha dimostrato di avere effetti benefici sullo stress fisico (modelli animali hanno indicato che LAC può ridurre gli effetti negativi dello stress cronico). Il trattamento con LAC ha ridotto il tempo di immobilità nel test del nuoto forzato, un indicatore di comportamento depressivo nei topi, e ha aumentato i livelli di BDNF nella corteccia frontale e nell'ippocampo.

Benessere cardiovascolare: sono stati osservati effetti benefici su condizioni quali dislipidemie e patologie vascolari periferiche; in modo particolare, la LAC aiuta ad accelerare il metabolismo dei carboidrati e lavora sulla prevenzione delle ischemie.

Diabete mellito di tipo II: soprattutto la somministrazione endovenosa di LAC potrebbe migliorare la sensibilità all'insulina, che è associata a un difetto nell'ossidazione degli acidi grassi a livello muscolare.

INTERAZIONI FARMACOLOGICHE ED EFFETTI AVVERSI

Anticoagulanti per possibili rischi di emorragia. Sono stati riportati casi di cefalea e sintomi gastrointestinali, molto rari. Possibile cattivo odore nelle urine (odore di pesce).

CONTROINDICAZIONI

Ipersensibilità nota al principio attivo. Gravidanza e allattamento solo sotto controllo medico.

POSOLOGIA

Da 500 a 2.000 mg al giorno divisi in 1-3 dosi al giorno.

BIBLIOGRAFIA

Chiechio S, Canonico PL, Grilli M. l-Acetylcarnitine: A Mechanistically Distinctive and Potentially Rapid-Acting Antidepressant Drug. *Int J Mol Sci.* 2017 Dec 21; 19(1): 11.

Rueda JR, Guillén V, Ballesteros J, Tejada MI, Solà I. L-acetylcarnitine for treating fragile X syndrome. *Cochrane Database Syst Rev.* 2015 May 19; 2015(5): CD010012.

Hoepner CT, McIntyre RS, Papakostas GI. Impact of Supplementation and Nutritional Interventions on Pathogenic Processes of Mood Disorders: A Review of the Evidence. *Nutrients*. 2021 Feb 26; 13(3): 767.

Orlando R, Ginerete RP, Cavalleri L, Aliperti V, Imbriglio T, Battaglia G, Zuena AR, Nicoletti F, Merlo Pich E, Collo G. Synergic action of L-acetylcarnitine and L-methylfolate in Mouse Models of Stress-Related Disorders and Human iPSC-Derived Dopaminergic Neurons. *Front Pharmacol*. 2022 Jun 2; 13: 913210.

Probiotici, prebiotici e postbiotici: implicazioni per la salute e il benessere

di Etta Finocchiaro

1. PROBIOTICI

1.1. Definizione e meccanismi d'azione

La definizione internazionale di "probiotico" è stata formulata da un gruppo di esperti convocati congiuntamente nel 2001 dalla FAO e dall'OMS: "Microrganismi vivi che, somministrati in quantità adeguate, conferiscono un beneficio alla salute dell'ospite".

In Italia, il Ministero della Salute definisce i probiotici come "microrganismi che si dimostrano in grado, una volta ingeriti in adeguate quantità, di esercitare funzioni benefiche per l'organismo". Il termine "probiotico" implica quindi un beneficio per la salute, ossia un *health claim* ai sensi del Regolamento (CE) n. 1924/2006.

Per definire la specie di un probiotico, è necessario utilizzare la nomenclatura tassonomica riconosciuta dalla International Union of Microbiological Societies (IUMS). È inoltre raccomandato il deposito dei ceppi nelle collezioni internazionali con status di IDA (Collezioni Internazionali di Ceppi Batterici).

Per essere classificati come probiotici, i microrganismi devono resistere al passaggio attraverso l'ambiente acido dello stomaco, aderire alle mucose intestinali e non provocare effetti indesiderati. I probiotici sono quindi microrganismi vivi, per lo più batteri e lieviti simili ai microbi non patogeni presenti naturalmente nel nostro tratto gastrointestinale. Il termine "probiotico" deriva dalla fusione tra il prefisso "pro" (a favore) e il sostantivo greco "bios" (vita), quindi "probiotico" significa "a favore della vita". Nell'intestino umano sono presenti miliardi di microrganismi, tra cui batteri, funghi e virus, che costituiscono il cosiddetto microbiota intestinale. I microbi intestinali e l'ospite umano vivono in un rapporto simbiotico vantaggioso per entrambi: l'ospite fornisce un habitat ricco di nutrienti assunti con la dieta, e il microbiota contribuisce al mantenimento della salute dell'intestino e del benessere generale dell'organismo.

Sebbene spesso vengano usati come sinonimi, microbiota e microbioma non sono la stessa cosa: il *microbiota* rappresenta l'insieme delle popolazioni batteriche presenti in un organo, mentre il *microbioma* è l'insieme di tutto il materiale

Stadi della vita e benessere generale

1. NUTRACEUTICI IN EPOCA PERINATALE E ALLATTAMENTO

La tutela della salute dell'adulto e dell'anziano inizia già nel periodo preconcezionale, prosegue in gravidanza, continua durante l'età pediatrica e dura per tutta la vita. Lo stile di vita e la nutrizione sono determinanti per la salute della madre e del nascituro. Carenze ed eccessi alimentari in gravidanza sono associati a problemi di salute della madre e del bambino, influenzano la crescita, il metabolismo e lo sviluppo neurofisiologico e neuromotorio del feto e poi del neonato e in seguito del bambino e dell'adulto fino alla terza età.

Nei Paesi industrializzati, l'infiammazione di basso grado o Low Grade Inflammation (LGI), spesso correlata a malattie metaboliche, rappresenta una problematica rilevante poiché favorisce lo sviluppo di Malattie Non Trasmissibili, Non-Communicable Diseases (NCDs), che oggi sono considerate la principale causa di invalidità e mortalità, superando anche le malattie infettive, come la recente pandemia di SARS-CoV-2.

In gravidanza e allattamento, le esigenze di macro e micronutrienti cambiano. Una nutrizione adeguata, unita a uno stile di vita sano, è fondamentale. Tuttavia, il fabbisogno di micronutrienti aumenta notevolmente in gravidanza e un'integrazione con nutraceutici appropriati può risultare utile. Anche se spesso si sconsiglia l'uso di integratori durante la gravidanza e l'allattamento, questa raccomandazione è dettata dal principio di precauzione. Il medico deve valutare caso per caso la somministrazione di nutraceutici, considerando la risposta clinica individuale e le possibili interazioni o effetti collaterali.

Dall'epoca preconcezionale viene consigliato:

Acido folico

Funzione: previene difetti del tubo neurale nel feto.

Dosaggio: 400-800 µg al giorno.

Indicazioni: consigliabile iniziare almeno 1-2 mesi prima del concepimento.

• Multivitaminici specifici per la gravidanza

Funzione: colmano eventuali lacune nutrizionali, specialmente in diete ricche di UPF (cibi di produzione industriale ultraprocessati).

Indicazioni: preparati appositamente per la gravidanza e con dosaggio indicato dal medico.

Ferro

Funzione: previene l'anemia e supporta l'aumento del volume sanguigno durante la gravidanza.

Dosaggio: circa 18 mg al giorno per donne non in gravidanza, circa 27 mg al giorno durante la gravidanza (dosaggio da confermare con il medico).

Iodio

Funzione: supporta la funzione tiroidea e lo sviluppo cognitivo del feto. *Dosaggio*: circa 200 µg al giorno.

• Vitamina D

Funzione: migliora l'assorbimento del calcio, la salute ossea e la funzione immunitaria.

Dosaggio: circa 800 UI al giorno.

• Omega-3 (DHA ed EPA)

Funzione: essenziali per lo sviluppo cerebrale e oculare del feto e per la salute cardiovascolare della madre.

Dosaggio: circa 200-300 mg di DHA al giorno.

Calcio

Funzione: fondamentale per la salute delle ossa della madre e per lo sviluppo osseo del feto.

Dosaggio: circa 1.000 mg al giorno.

• Vitamina B12

Funzione: importante per la sintesi del DNA e la salute del sistema nervoso, particolarmente rilevante per vegetariane e vegane.

Dosaggio: circa 2,4 μ g al giorno (potrebbe essere maggiore in base alle esigenze individuali).

Integrazione consigliata durante la **gravidanza**:

Acido folico

Funzione: previene difetti del tubo neurale nel feto.

Dosaggio: 400-800 µg al giorno.

Indicazioni: particolarmente importante in gravidanza per lo sviluppo iniziale del feto.

Ferro

Funzione: supporta l'aumento del volume sanguigno e la formazione della placenta e del feto.

Dosaggio: 27 mg al giorno.

9 **Sistemi e apparati del corpo umano**

1. APPARATO DIGERENTE

Nutraceutici per la salute dell'apparato digerente

1.1. Prebiotici per il benessere dell'apparato digerente

Fibre: migliorano il microbiota intestinale sia fibre **solubili** sia **insolubili** contenute in avena, mele, carote, agrumi, piselli, orzo, grano integrale, crusca, noci, fagioli, verdure a foglia verde. Possono essere somministrate sia con la dieta sia come nutraceutici. **Acido butirrico**: integrità della barriera intestinale e nella riduzione dell'infiammazione.

Beta-glucani: polisaccaridi non amidacei, presenti in natura come costituenti della parete cellulare di alcuni batteri e funghi (Shiitake e Maitake), lieviti (lievito di birra), nelle alghe, nella crusca, nell'orzo e nell'avena, stimolano la crescita e l'attività del microbiota intestinale sano, producendo acidi grassi a catena corta (SCFA) favoriscono la crescita di bifidobatteri inibendo la crescita dei patogeni. **Beta-galattosidasi**: è impiegata nella produzione dei prebiotici galatto-oligosaccaridi (GOS) che promuovono la crescita di bifidobatteri.

Cichorium intybus o cicoria comune: come molti altri vegetali (aglio, cipolla, porro, asparagi, carciofi, tarassaco, radice di bardana) contiene inulina, oligosaccaride composto da più unità di fruttosio con un glucosio terminale, favorisce nel microbiota intestinale lo sviluppo di ceppi batterici meno pro infiammatori, lattobacilli ed SCFA. Frutto-oligosaccaridi (FOS): stimolano la crescita di *Lactobacilli* e *Bifidobacteri*. Saccharomyces boulardii: lievito probiotico, riduce l'infiammazione e migliora la funzione della barriera intestinale.

1.2. Diarrea

I **probiotici** più usati sono:

- Bacillus coagulans: diarrea associata a infezioni e all'uso di antibiotici;
- Bifidobacterium breve: antibiotico resistente (amoxicillina e amoxicillina e acido clavulanico) che previene la diarrea durante e dopo le terapie antibiotiche;

- *Bifidobacterium lactis*: previene la diarrea durante e dopo le terapie antibiotiche:
- Bifidobacterium longum: equilibrio del microbiota intestinale;
- *Clostridium butyricum*: integrità della barriera intestinale e riduce l'infiammazione intestinale, utile per diarrea acuta e colite ulcerosa;
- Enterococcus faecium: diarrea associata a infezioni e antibiotici;
- Escherichia coli Nissle 1917: diarrea cronica e prevenzione delle recidive di colite ulcerosa, nelle infezioni intestinali;
- Lactobacillus acidophilus: diarrea associata a infezioni;
- *Lactobacillus rhamnosus GG (LGG)*: diarrea da farmaci, infezioni e diarrea del viaggiatore;
- *Lactococcus lactis*: sistema immunitario intestinale, riduce la durata e la gravità della diarrea infettiva;
- Saccharomyces boulardii: prevenzione e trattamento della diarrea associata agli antibiotici, delle infezioni da Clostridioides difficile e della diarrea del viaggiatore;
- *Streptococcus thermophilus*: migliora la digestione del lattosio e aiuta a ridurre la diarrea nei soggetti con intolleranza al lattosio.

Come nutraceutici, nella forma cronica, possono essere utili:

- l'acido butirrico, appartenente alla classe degli acidi grassi a catena corta (SCFA), con azione antinfiammatoria e che favorisce lo sviluppo di un microbiota sano;
- il colostro bovino, che aiuta a ripristinare la barriera intestinale danneggiata, riducendo la permeabilità e prevenendo il passaggio di tossine e microrganismi;
- la **glucosamina**, che riduce l'infiammazione sia sistemica che locale a livello intestinale:
- la **lattoferrina**, che riduce la produzione di citochine pro-infiammatorie come TNF- α , IL-1 β e IL-6, e aumenta le citochine antinfiammatorie come IL-4 e IL-10.

1.3. Dispepsia funzionale

È una sindrome clinica con sintomi come dolore all'addome superiore in zona epigastrica, senso di pienezza postprandiale e sazietà precoce. Non esistono farmaci specifici, eccetto alcuni procinetici che è preferibile non utilizzare nei bambini. Può essere utile lo *Zingiber officinale* (zenzero) per il suo effetto contro la nausea; inoltre, le foglie di *Perilla frutescens* hanno dimostrato un'azione di stimolo sulla motilità gastrica, inibizione dello spasmo intestinale e riduzione dell'infiammazione.

Patologie e condizioni specifiche

1. MALATTIE METABOLICHE

Nutraceutici nelle malattie metaboliche

1.1. Sovrappeso e obesità

Per bambini e adolescenti da 10 a 16 anni: a oggi sono autorizzati due farmaci per obesità pediatrica, Liraglutide, agonista del recettore glucagon-like peptide-1 (GLP-1) dai 12 anni in su, e Setmelanotide, agonista del recettore della melanocortina-4 (MC4R) che agisce regolando l'appetito e il metabolismo per alcune forme genetiche rare di obesità a partire dai 6 anni in poi.

Come nutraceutici abbiamo individuato un intervento complesso che deve riguardare l'educazione al gusto, lo stile di vita e il rapporto con la famiglia e la società

Acetil-L-carnitina: coinvolta nel metabolismo dei grassi, aiuta a bruciare i grassi corporei.

Acido alfa-linolenico (ALA): contribuisce al controllo del peso e al metabolismo dei grassi.

Acido butirrico: supporta la salute intestinale, contribuendo al miglioramento del metabolismo, anche se il suo effetto sistemico sul metabolismo è meno chiaro.

Aloe vera: favorisce la digestione e ha effetti antinfiammatori.

Beta-glucani: immunomodulanti, contribuiscono alla riduzione dell'infiammazione di basso grado.

Citrus aurantium (arancio amaro): leggero stimolante metabolico, può supportare il controllo del peso.

Cromo: regola i livelli di zucchero nel sangue, importante per il controllo del peso.

Curcuma longa (curcumina): potente antinfiammatorio, utile nella gestione del sovrappeso.

Cynara scolymus (carciofo): favorisce la digestione dei grassi e la depurazione del fegato.

Ganoderma lucidum (Reishi): antinfiammatorio e immunomodulante, utile per combattere l'infiammazione cronica di basso grado.

Garcinia cambogia (acido idrossicitrico): utile per il controllo del peso, riduce la sintesi dei grassi.

Omega-3: riduce l'infiammazione e migliora la composizione corporea.

Phaseolus vulgaris (fagiolo): inibitore dell'alfa-amilasi, aiuta a ridurre l'assorbimento dei carboidrati.

Vitamina B6: importante per il metabolismo delle proteine e dei carboidrati.

Vitamina D3: favorisce la regolazione del metabolismo e la salute delle ossa. Il suo ruolo nella sensibilità all'insulina e nella regolazione del peso corporeo è ancora in fase di studio, con risultati non del tutto univoci.

Zinco: cofattore enzimatico, aiuta il metabolismo e il controllo dell'infiammazione.

Per adulti:

Acido butirrico: migliora la salute intestinale, con effetti benefici sul metabolismo. **Acido lipoico**: potente antiossidante che aiuta nella gestione del peso e dell'infiammazione.

Aloe vera: digestivo e antinfiammatorio.

Berberis aristata (berberina): utile per il controllo della glicemia e il metabolismo dei grassi. Il suo effetto sulla glicemia si manifesta grazie alla modulazione della via AMPK e all'aumento della sensibilità insulinica.

Boswellia serrata (acidi boswelici): potente antinfiammatorio naturale.

Camellia sinensis (tè verde): ricco di catechine, aiuta a bruciare i grassi e ha proprietà antinfiammatorie.

Capsicum (peperoncino): stimola il metabolismo e aiuta a bruciare i grassi.

Citrus aurantium (arancio amaro, p-sinefrina): stimolante metabolico naturale.

Coenzima Q10: utile per migliorare il metabolismo energetico.

Cromo: migliora il metabolismo del glucosio e dei grassi.

Cynara scolymus (carciofo): favorisce il metabolismo dei grassi e la digestione. **Garcinia cambogia (acido idrossicitrico)**: supporta la riduzione del grasso corporeo.

Omega-3: riduce l'infiammazione e migliora la composizione corporea.

Palmitoil Etanol Amide (PEA): antinfiammatorio naturale che aiuta a ridurre l'infiammazione cronica.

Quercitina: aiuta a ridurre l'infiammazione e ha effetti benefici sul metabolismo. **Rodiola rosea**: adattogeno, utile per la gestione dello stress e il controllo del peso.

Selenio: potente antiossidante, utile per ridurre l'infiammazione.

Vitamina B3 (niacina): coinvolta nel metabolismo energetico e nella riduzione del colesterolo.

Gianfranco Trapani

LA NUTRACEUTICA NELLA PRATICA CLINICA

La nutraceutica svolge un ruolo importante nella promozione e salvaguardia della salute di bambini e adulti. Per un medico, un pediatra e, più in generale, per un professionista sanitario, è ormai essenziale distinguere tra integratori alimentari, nutraceutici, alimenti funzionali, novel food e farmaci vegetali, nonché comprenderne l'integrazione in un approccio combinato con modifiche dello stile di vita e terapie farmacologiche.

Il volume, di 600 pagine, è suddiviso in tre parti: definizioni generali, schede di rapida consultazione sui nutraceutici in commercio e pratica clinica, per la prevenzione e il supporto terapeutico. Quest'ultima sezione fornisce quindi gli strumenti concreti per integrare i nutraceutici nella professione sanitaria quotidiana.

Per evitare la diffusione di miti e false speranze, nel libro vengono presentate evidenze scientifiche e studi che ne dimostrano l'efficacia, i limiti e le possibili opportunità di impiego in diversi ambiti clinici. Questo approccio consente di fornire una comprensione chiara e pratica del ruolo che la nutraceutica può svolgere come parte di una strategia integrata per la salute e la personalizzazione delle terapie.

L'autore si avvale della collaborazione di diversi altri medici esperti che danno il contributo in specifici capitoli.

Gianfranco Trapani, pediatra esperto in nutrizione e medicine complementari, professore a contratto al Master di II livello dell'Università di Torino, è editor in chief della rivista Pediatrics 360° (associata a JPNIM), è responsabile del gruppo di ricerca sulla Nutraceutica per AINPed (Associazione Italiana Nutraceutica in Pediatria). Ha scritto oltre 30 libri ripartiti fra testi di divulgazione e professionali.

